3,079 research outputs found
Age, metallicity and star formation history of spheroidal galaxies in cluster at z~1.2
We present the analysis, based on spectra collected at the Large Binocular
Telescope, of the stellar populations in seven spheroidal galaxies in the
cluster XLSSJ0223 at 1.22. The aim is to constrain the epoch of their
formation and their star formation history. Using absorption line strenghts and
full spectral fitting, we derive for the stellar populations of the seven
spheroids a median age =2.40.6 Gyr, corresponding to a median
formation redshift $\sim2.6_{-0.5}^{+0.7}$ (lookback time =
11$_{-1.0}^{+0.6}$ Gyr). We find a significant scatter in age, showing that
massive spheroids, at least in our targeted cluster, are not coeval. The median
metallicity is [Z/H]=0.09$\pm$0.16, as for early-types in clusters at
0$<z<<\sigma_e_{dyn}\Sigma_e_{dyn}\Sigma_e_{dyn}\Sigma_ez\sim1.3$, i.e.
more massive spheroids are more metal rich, have lower stellar mass density and
tend to be older than lower-mass galaxies.Comment: 16 pages, 6 figures, 6 tables, published on MNRA
The Kinematics of Kepler's Supernova Remnant as revealed by Chandra
I determine the expansion of the supernova remnant of SN1604 (Kepler's
supernova) based on archival Chandra ACIS-S observations made in 2000 and 2006.
The measurements were done in several distinct energy bands, and were made for
the remnant as a whole, and for six individual sectors. The average expansion
parameter indicates that the remnant expands as , but there
are significant differences in different parts of the remnant: the bright
northwestern part expands as , whereas the rest of the
remnant's expansion shows an expansion . The latter is
consistent with an explosion in which the outer part of the ejecta has a
negative power law slope for density () of , or with
an exponential density profile(). The expansion
parameter in the southern region, in conjunction with the shock radius,
indicate a rather low value (<5E50 erg) for the explosion energy of SN1604 for
a distance of 4 kpc. An higher explosion energy is consistent with the results,
if the distance is larger.
The filament in the eastern part of the remnant, which is dominated by X-ray
synchrotron radiation seems to mark a region with a fast shock speed , corresponding to a shock velocity of v= 4200 km/s, for a distance to
SN1604 of 4 kpc. This is consistent with the idea that X-ray synchrotron
emission requires shock velocities in excess of ~2000 km/s.
The X-ray based expansion measurements reported are consistent with results
based on optical and radio measurements, but disagree with previous X-ray
measurements based on ROSAT and Einstein observations.Comment: Accepted for publication in ApJ. This new version is the accepted
version, which differs mainly in the discussion sectio
Modello coesivo per l’avanzamento di fratture mediante rilascio nodale di strutture discretizzate con elementi finiti
La simulazione numerica della propagazione di una frattura in MODO I, viaggiante ad elevatavelocità in un acciaio a comportamento duttile è realizzata attraverso un modello coesivo che governa ladistribuzione delle forze di rilascio nodale. Come noto, la ricerca di un valore di tensione all’apice non ha alcunsenso nel caso elastico; infatti, la tensione può essere valutata solo mediante fattori di campo. Nel caso elasto-plastico, incrudimento e softening di origine geometrica o legato al progressivo danneggiamento influisconodecisamente sull’andamento esponenziale del campo tensionale. È possibile comunque individuare un valore diriferimento, di entità finita, mediante estrapolazione delle tensioni elasto-plastiche nella zona di inizio softeningdella frattura. Tale grandezza può essere presa come fattore di riferimento per il calcolo delle forze di rilasciocoesive e quindi dell’energia dissipata. Nel lavoro viene discusso come determinare, dal campo di tensioneelasto-plastico locale, il valore che governa la zona coesiva al variare del T-stress
Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?
We present observations of two LMC supernova remnants (SNRs), DEM L238 and
DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central
emission, surrounded by a faint shell, is present in both remnants. The central
emission has an entirely thermal spectrum dominated by strong Fe L-shell lines,
with the deduced Fe abundance in excess of solar and not consistent with the
LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and
DEM L249 are remnants of thermonuclear (Type Ia) explosions. The shell emission
originates in gas swept up and heated by the blast wave. A standard Sedov
analysis implies about 50 solar masses in both swept-up shells, SNR ages
between 10,000 and 15,000 yr, low (< 0.05 cm^-3) preshock densities, and
subluminous explosions with energies of 3x10^50 ergs. The central Fe-rich
supernova ejecta are close to collisional ionization equilibrium. Their
presence is unexpected, because standard Type Ia SNR models predict faint
ejecta emission with short ionization ages. Both SNRs belong to a previously
unrecognized class of Type Ia SNRs characterized by bright interior emission.
Denser than expected ejecta and/or a dense circumstellar medium around the
progenitors are required to explain the presence of Fe-rich ejecta in these
SNRs. Substantial amounts of circumstellar gas are more likely to be present in
explosions of more massive Type Ia progenitors. DEM L238, DEM L249, and similar
SNRs could be remnants of ``prompt'' Type Ia explosions with young (~100 Myr
old) progenitors.Comment: 24 pages, 8 figures, ApJ, in pres
The Kormendy relation of massive elliptical galaxies at z~1.5. Evidence for size evolution ?
We present the morphological analysis based on HST-NIC2 (0.075 arcsec/pixel)
images in the F160W filter of a sample of 9 massive field (> 10^{11} M_\odot)
galaxies spectroscopically classified as early-types at 1.2<z<1.7. Our analysis
shows that all of them are bulge dominated systems. In particular, 6 of them
are well fitted by a de Vaucouleurs profile (n=4) suggesting that they can be
considered pure elliptical galaxies. The remaining 3 galaxies are better fitted
by a Sersic profile with index 1.9<n<2.3 suggesting that a disk-like component
could contribute up to 30% to the total light of these galaxies. We derived the
effective radius R_e and the mean surface brightness within R_e of our
galaxies and we compared them with those of early-types at lower redshifts. We
find that the surface brightness of our galaxies should get fainter by
2.5 mag from z~1.5 to z~0 to match the surface brightness of the local
ellipticals with comparable R_e, i.e. the local Kormendy relation. Luminosity
evolution without morphological changes can only explain half of this effect,
as the maximum dimming expected for an elliptical galaxy is ~1.6 mag in this
redshift range. Thus, other parameters, possibly structural, may undergo
evolution and play an important role in reconciling models and observations.
Hypothesizing an evolution of the effective radius of galaxies we find that R_e
should increase by a factor 1.5 from z~1.5 to z~0.Comment: Accepted for publication in MNRAS, 15 pages, 8 figure
Extremely compact massive galaxies at z~1.4
The optical rest-frame sizes of 10 of the most massive
(~5x10^{11}h_{70}^{-2}M_sun) galaxies found in the near-infrared MUNICS survey
at 1.2<z<1.7 are analysed. Sizes were estimated both in the J and K' filters.
These massive galaxies are at least a factor of 4_{-1.0}^{+1.9} (+-1 sigma)
smaller in the rest-frame V-band than local counterparts of the same stellar
mass. Consequently, the stellar mass density of these objects is (at least) 60
times larger than massive ellipticals today. Although the stellar populations
of these objects are passively fading, their structural properties are rapidly
changing since that redshift. This observational fact disagrees with a scenario
where the more massive and passive galaxies are fully assembled at z~1.4 (i.e.
a monolithic scenario) and points towards a dry merger scenario as the
responsible mechanism for the subsequent evolution of these galaxies.Comment: 5 pages, 2 figures, 1 table, accepted for publication in MNRAS
letter
A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction
We present initial results of a 750 ks Chandra observation of the remnant of
Kepler's supernova of AD 1604. The strength and prominence of iron emission,
together with the absence of O-rich ejecta, demonstrate that Kepler resulted
from a thermonuclear supernova, even though evidence for circumstellar
interaction is also strong. We have analyzed spectra of over 100 small regions,
and find that they fall into three classes. (1) The vast majority show Fe L
emission between 0.7 and 1 keV and Si and S K alpha emission; we associate
these with shocked ejecta. A few of these are found at or beyond the mean blast
wave radius. (2) A very few regions show solar O/Fe abundance rations; these we
associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A
few regions are dominated by continuum, probably synchrotron radiation.
Finally, we find no central point source, with a limit about 100 times fainter
than the central object in Cas A. The evidence that the blast wave is
interacting with CSM may indicate a Ia explosion in a more massive progenitor.Comment: Accepted by ApJ Letter
Dayside Ionospheric Superfountain
The Dayside Ionospheric Super-fountain modified SAMI2 code predicts the uplift, given storm-time electric fields, of the dayside near-equatorial ionosphere to heights of over 800 kilometers during magnetic storm intervals. This software is a simple 2D code developed over many years at the Naval Research Laboratory, and has importance relating to accuracy of GPS positioning, and for satellite drag
On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters
The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the
field and in rich galaxy clusters are contrasted by juxtaposing the build-up of
heavy metals in the universe inferred from observed star formation and
supernovae rate histories with data on the evolution of Fe abundances in the
intracluster medium (ICM). Models for the chemical evolution of Fe in these
environments are constructed, subject to observational constraints, for this
purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial
mass function (IMF) are consistent with observations in the field, cluster Fe
enrichment immediately tracks a rapid, top-heavy phase of star formation --
although transport of Fe into the ICM may be more prolonged and star formation
likely continues to redshifts <1. The source of this prompt enrichment is Type
II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the
SNIa rate normalization is scaled down from its value in the field according to
the relative number of candidate progenitor stars in the 3-8 solar mass range)
and/or SNIa explosions with short delay times associated with the rapid star
formation mode. Star formation is >3 times more efficient in rich clusters than
in the field, mitigating the overcooling problem in numerical cluster
simulations. Both the fraction of baryons cycled through stars, and the
fraction of the total present-day stellar mass in the form of stellar remnants,
are substantially greater in clusters than in the field.Comment: 51 pages including 26 figures and 2 tables, accepted for publication
in ApJ 5/4/0
Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA
We performed a kinematical analysis of the [CII] line emission of the BR
1202-0725 system at z~4,7 using ALMA observations. The most prominent sources
of this system are a quasar and a submillimeter galaxy, separated by a
projected distance of about 24 kpc and characterized by very high SFR, higher
than 1000 Msun/yr. However, the ALMA observations reveal that these galaxies
apparently have undisturbed rotating disks, which is at variance with the
commonly accepted scenario in which strong star formation activity is induced
by a major merger. We also detected faint components which, after spectral
deblending, were spatially resolved from the main QSO and SMG emissions. The
relative velocities and positions of these components are compatible with
orbital motions within the gravitational potentials generated by the QSO host
galaxy and the SMG, suggesting that they are smaller galaxies in interaction or
gas clouds in accretion flows of tidal streams. We did not find any clear
spectral evidence for outflows caused by AGN or stellar feedback. This suggests
that the high star formation rates might be induced by interactions or minor
mergers with these companions, which do not affect the large-scale kinematics
of the disks, however. Our kinematical analysis also indicates that the QSO and
the SMG have similar Mdyn, mostly in the form of molecular gas, and that the
QSO host galaxy and the SMG are seen close to face-on with slightly different
disk inclinations: the QSO host galaxy is seen almost face-on (i~15), while the
SMG is seen at higher inclinations (i~25). Finally, the ratio between the black
hole mass of the QSO, obtained from XShooter spectroscopy, and the Mdyn of the
host galaxy is similar to value found in very massive local galaxies,
suggesting that the evolution of black hole galaxy relations is probably better
studied with dynamical than with stellar host galaxy masses.Comment: Accepted for publication in Astronomy and Astrophysic
- …
