370 research outputs found
Among once-daily regimens, single tablet regimens (STRs) are associated with better adherence
Previous published evidences showed that taking HAART once-daily (OD) is associated to better adherence when compared to BID or TID regimens. However, no further studies investigated whether, among OD regimens, adherence levels can be differently influenced. Aim of the study was to evaluate levels of self-reported adherence in HIV+ people according to type of HAART dosing (STR, OD with more than one pill or BID). To limit reporting biases, the study was performed in five different non-clinic settings covering North and Central Italy. A total of 230 patients on stable HAART were asked to complete a semi-structured, anonymous questionnaire reporting their attitude toward HAART, their adherence and the acceptability of their regimen. Self-perception of adherence was also investigated with a single item for comparison with real adherence behavior. Most of the subjects were males (66%) with a mean age of 46 years, with higher education level (72%) and a long history of HIV infection (mean 13.6 years). 17% of patients were on a first-line regimen. 21% reported to miss at least one dose during the past week (STR: 6%; OD >1 pill 23% and BID 21%; p<0.05). People taking STR and BID tend to report less discontinuations (all the drug of the day for at least 3 times in a month) compared to OD>1 pill (6 and 4% vs 11%). People taking therapies other than HAART reported similar adherence levels of people taking only HAART, even when stratified for dosing groups. Even people judging their adherence as ‘optimal’ or ‘very good’, 10 and 17% respectively, reported having missed a dose during the last week. At stepwise regression model, optimal adherence was correlated to being male (OR: 2.38; 95% CI: 1.19–4.74), younger (OR: 3.04; 95% CI: 1.01–9.13) and with a shorter HIV infection (OR: 3.58; 95% CI: 1.04–12.38). People taking simpler once-daily STR tend to report better adherence than people taking OD>1 pill or BID. Perception of optimal adherence is largely variable among HIV-infected people taking HAART, although only a minority of subjects showing less than perfect adherence do judge their behavior as ‘optimal’
Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma.
SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB
The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
Impact of social determinants on antiretroviral therapy access and outcomes entering the era of universal treatment for people living with HIV in Italy
Background: Social determinants are known to be a driving force of health inequalities, even in high income countries. Aim of our study was to determine if these factors can limit antiretroviral therapy (ART) access, outcome and retention in care of people living with HIV (PLHIV) in Italy. Methods: All ART naïve HIV+ patients (pts) of Italian nationality enrolled in the ICONA Cohort from 2002 to 2016 were included. The association of socio-demographic characteristics (age, sex, risk factor for HIV infection, educational level, occupational status and residency area) with time to: ART initiation (from the first positive anti-HIV test), ART regimen discontinuation, and first HIV-RNA < 50 cp/mL, were evaluated by Cox regression analysis, Kaplan Meier method and log-rank test. Results: A total of 8023 HIV+ pts (82% males, median age at first pos anti-HIV test 36 years, IQR: 29-44) were included: 6214 (77.5%) started ART during the study period. Women, people who inject drugs (PWID) and residents in Southern Italy presented the lowest levels of education and the highest rate of unemployment compared to other groups. Females, pts aged > 50 yrs., unemployed vs employed, and people with lower educational levels presented the lowest CD4 count at ART initiation compared to other groups. The overall median time to ART initiation was 0.6 years (yrs) (IQR 0.1-3.7), with a significant decrease over time [2002-2006 = 3.3 yrs. (0.2-9.4); 2007-2011 = 1.0 yrs. (0.1-3.9); 2012-2016 = 0.2 yrs. (0.1-2.1), p < 0.001]. By multivariate analysis, females (p < 0.01) and PWID (p < 0.001), presented a longer time to ART initiation, while older people (p < 0.001), people with higher educational levels (p < 0.001), unemployed (p = 0.02) and students (p < 0.001) were more likely to initiate ART. Moreover, PWID, unemployed vs stable employed, and pts. with lower educational levels showed a lower 1-year probability of achieving HIV-RNA suppression, while females, older patients, men who have sex with men (MSM), unemployed had higher 1-year risk of first-line ART discontinuation. Conclusions: Despite median time to ART start decreased from 2002 to 2016, socio-demographic factors still contribute to disparities in ART initiation, outcome and durability
MFN2 coordinates mitochondria motility with α-tubulin acetylation and this regulation is disrupted in CMT2A
: Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion and tethering with the ER. The role of MFN2 in mitochondrial transport has however remained elusive. Like MFN2, acetylated microtubules play key roles in mitochondria dynamics. Nevertheless, it is unknown if the α-tubulin acetylation cycle functionally interacts with MFN2. Here, we show that mitochondrial contacts with microtubules are sites of α-tubulin acetylation, which occurs through MFN2-mediated recruitment of α-tubulin acetyltransferase 1 (ATAT1). This activity is critical for MFN2-dependent regulation of mitochondria transport, and axonal degeneration caused by CMT2A MFN2 associated R94W and T105M mutations may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in α-tubulin acetylation and suggest that disruption of this activity plays a role in the onset of MFN2-dependent CMT2A
Potential of a natural compound as hedgehog pathway inhibitor for the treatment of intrahepatic cholangiocarcinoma
Intrahepatic cholangiocarcinoma (iCCA) represents a rare cancer arising in the biliary tree, linked to an alarming fatality rate. It is subcategorized into large bile duct iCCA and small bile duct iCCA, according to the World Health Organization new classification. Regretfully, the high variability of iCCA at the molecular, genomic, histological and clinical levels makes these difficulties unmanageable. However, improvement in targeted therapy, surgical management, and molecular characterization have been made in the past few years. Indeed, the molecular pathogenesis of iCCA is intricate and involves multiple molecular networks: among them, Hedgehog (Hh) pathway plays a crucial role in many hallmarks of iCCA, such as tumor proliferation, survival, migration and epithelial-mesenchymal transition reprogramming. The main intent of this study is to prove the antitumor efficacy of a natural compound, named Glabrescione B (GlaB) inhibiting Hh pathway in experimental models of human iCCA, in vitro.
Trypan Blue Exclusion test have been used to assess, at different time points, the dose-response of free GlaB and hyaluronic acid (HA)-encapsulated GlaB (to better convey the drug into the site of damage), an inhibitor of Gli1 (Hh downstream transcriptional factor). Western blot analyses have been used to evaluate the target protein level. Wound healing assay has been established to evaluate the migratory activity of all cell lines subjected to the treatments. All experiments have been conducted in n.3 experimental replicates.
Our research shows a dose- and time-dependent reduction of cell proliferation by Trypan Blue Exclusion Test in all cell lines both with free GlaB and HA-GlaB from lower to higher concentrations and from 24-hour to 96-hour incubation (p<0.05). Similarly, at the protein level, Gli1 knockdown, in a dose- and time-dependent manner, is demonstrated (p<0.05). Eventually, Wound healing assay preliminary data revelead a dose- and time-dependent decrease in wound edge reunification, leading to a lower migratory capacity. These data illustrate a better comprehension of a novel and putative way in the management of iCCA.
Hedgheog pathway dysregulation is known to be correlated with the development and progression of various cancers, including iCCA. The accomplishment of this study lays the groundwork for in vivo pre-clinical studies of HA-encapsuled GlaB in iCCA
A smo/gli multitarget hedgehog pathway inhibitor impairs tumor growth
Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition
1H-NMR metabolomics reveals the Glabrescione B exacerbation of glycolytic metabolism beside the cell growth inhibitory effect in glioma
BACKGROUND: Glioma is the most common and primary brain tumors in adults. Despite the available multimodal therapies, glioma patients appear to have a poor prognosis. The Hedgehog (Hh) signaling is involved in tumorigenesis and emerged as a promising target for brain tumors. Glabrescione B (GlaB) has been recently identified as the first direct inhibitor of Gli1, the downstream effector of the pathway.
METHODS: We established the overexpression of Gli1 in murine glioma cells (GL261) and GlaB effect on cell viability. We used 1H-nuclear magnetic resonance (NMR) metabolomic approach to obtain informative metabolic snapshots of GL261 cells acquired at different time points during GlaB treatment. The activation of AMP activated protein Kinase (AMPK) induced by GlaB was established by western blot. After the orthotopic GL261 cells injection in the right striatum of C57BL6 mice and the intranasal (IN) GlaB/mPEG5kDa-Cholane treatment, the tumor growth was evaluated. The High Performance Liquid Chromatography (HPLC) combined with Mass Spectrometry (MS) was used to quantify GlaB in brain extracts of treated mice.
RESULTS: We found that GlaB affected the growth of murine glioma cells both in vitro and in vivo animal model. Using an untargeted 1H-NMR metabolomic approach, we found that GlaB stimulated the glycolytic metabolism in glioma, increasing lactate production. The high glycolytic rate could in part support the cytotoxic effects of GlaB, since the simultaneous blockade of lactate efflux with \u3b1-cyano-4-hydroxycinnamic acid (ACCA) affected glioma cell growth. According to the metabolomic data, we found that GlaB increased the phosphorylation of AMPK, a cellular energy sensor involved in the anabolic-to-catabolic transition.
CONCLUSIONS: Our results indicate that GlaB inhibits glioma cell growth and exacerbates Warburg effect, increasing lactate production. In addition, the simultaneous blockade of Gli1 and lactate efflux amplifies the anti-tumor effect in vivo, providing new potential therapeutic strategy for this brain tumor
Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation
Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy
AIP4/Itch Regulates Notch Receptor Degradation in the Absence of Ligand
International audienceBACKGROUND:The regulation of Notch signaling heavily relies on ubiquitination events. Drosophila Su(dx), a member of the HECT family of ubiquitin-ligases, has been described as a negative regulator of Notch signaling, acting on the post-endocytic sorting of Notch. The mammalian ortholog of Su(dx), Itch/AIP4, has been shown to have multiple substrates, including Notch, but the precise events regulated by Itch/AIP4 in the Notch pathway have not been identified yet.METHODOLOGY/PRINCIPAL FINDINGS:Using Itch-/- fibroblasts expressing the Notch1 receptor, we show that Itch is not necessary for Notch activation, but rather for controlling the degradation of Notch in the absence of ligand. Itch is indeed required after the early steps of Notch endocytosis to target it to the lysosomes where it is degraded. Furthermore Itch/AIP4 catalyzes Notch polyubiquitination through unusual K29-linked chains. We also demonstrate that although Notch is associated with Itch/AIP4 in cells, their interaction is not detectable in vitro and thus requires either a post-translational modification, or a bridging factor that remains to be identified.CONCLUSIONS/SIGNIFICANCE:Taken together our results identify a specific step of Notch regulation in the absence of any activation and underline differences between mammalian and Drosophila Notch pathways
- …
