2,110 research outputs found
On the attenuation coefficient of monomode periodic waveguides
It is widely accepted that, on ensemble average, the transmission T of guided
modes decays exponentially with the waveguide length L due to small
imperfections, leading to the important figure of merit defined as the
attenuation-rate coefficient alpha = -/L. In this letter, we evidence
that the exponential-damping law is not valid in general for periodic monomode
waveguides, especially as the group velocity decreases. This result that
contradicts common beliefs and experimental practices aiming at measuring alpha
is supported by a theoretical study of light transport in the limit of very
small imperfections, and by numerical results obtained for two waveguide
geometries that offer contrasted damping behaviours
Eco-aesthetic dimensions: Herbert Marcuse, ecollogy and art
In his last book, The Aesthetic Dimension (1978), Marcuse argued that a concern for aesthetics is justified when political change is unlikely. But the relation between aesthetics and politics is oblique: “Art cannot change the world, but it can contribute to changing the consciousness … of the men and women who could change the world.” (p. 33). Marcuse also linked his critique of capitalism to environmentalism in the early 1970s: “the violation of the Earth is a vital aspect of the counterrevolution.” (Ecology and Revolution, in The New Left and the 1960s, Collected Papers 3, 2005, p. 173). This article revisits Marcuse’s ideas on aesthetics and ecology, and reviews two recent art projects which engage their audiences in ecological issues: The Jetty Project (2014) by Wolfgang Weileder—which used recycled material and community participation to construct a temporary monument within a wider conservation project on the Tyne, N-E England—and Fracking Futures by HeHe (Helen Evans and Heiko Hansen)—which turned the interior of the gallery at FACT, Liverpool, into what appeared to be a fracking site. The aim is not to evaluate the projects, nor to test the efficacy of Marcuse’s ideas, more to ask again whether art has a role in a shift of attitude which might contribute to dealing with the political and economic causes of climate change
Grating-coupled excitation of multiple surface plasmon-polariton waves
The excitation of multiple surface-plasmon-polariton (SPP) waves of different
linear polarization states and phase speeds by a surface-relief grating formed
by a metal and a rugate filter, both of finite thickness, was studied
theoretically, using rigorous coupled-wave-analysis. The incident plane wave
can be either p or s polarized. The excitation of SPP waves is indicated by the
presence of those peaks in the plots of absorbance vs. the incidence angle that
are independent of the thickness of the rugate filter. The absorbance peaks
representing the excitation of s-polarized SPP waves are narrower than those
representing p-polarized SPP waves. Two incident plane waves propagating in
different directions may excite the same SPP wave. A line source could excite
several SPP waves simultaneously
Atom trapping and guiding with a subwavelength-diameter optical fiber
We suggest using an evanescent wave around a thin fiber to trap atoms. We
show that the gradient force of a red-detuned evanescent-wave field in the
fundamental mode of a silica fiber can balance the centrifugal force when the
fiber diameter is about two times smaller than the wavelength of the light and
the component of the angular momentum of the atoms along the fiber axis is in
an appropriate range. As an example, the system should be realizable for Cesium
atoms at a temperature of less than 0.29 mK using a silica fiber with a radius
of 0.2 m and a 1.3-m-wavelength light with a power of about 27 mW.Comment: 5 pages, 5 figure
Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity
We study the interaction of an atom with a quantum guided field in a weakly
driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian
and derive the density-matrix equations for the combined atom-cavity system. We
calculate the mean photon number, the second-order photon correlation function,
and the atomic excited-state population. We show that, due to the confinement
of the guided cavity field in the fiber cross-section plane and in the space
between the FBG mirrors, the presence of the atom in the FBG cavity can
significantly affect the mean photon number and the photon statistics even
though the cavity finesse is moderate, the cavity is long, and the probe field
is weak.Comment: Accepted for Phys. Rev.
Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links
Bound whispering gallery modes in circular arrays of dielectric spherical particles
Low-dimensional ordered arrays of optical elements can possess bound modes
having an extremely high quality factor. Typically, these arrays consist of
metal elements which have significantly high light absorption thus restricting
performance. In this paper we address the following question: can bound modes
be formed in dielectric systems where the absorption of light is negligible?
Our investigation of circular arrays of spherical particles shows that (1) high
quality modes in an array of 10 or more particles can be attained at least for
a refractive index , so optical materials like TiO or GaAs can
be used; (2) the most bound modes have nearly transverse polarization
perpendicular to the circular plane; (3) in a particularly interesting case of
TiO particles (rutile phase, ), the quality factor of the most
bound mode increases almost by an order of magnitude with the addition of 10
extra particles, while for particles made of GaAs the quality factor increases
by almost two orders of magnitude with the addition of ten extra particles. We
hope that this preliminary study will stimulate experimental investigations of
bound modes in low-dimensional arrays of dielectric particles.Comment: Submitted to Physical Review
Intensity Distribution of Modes in Surface Corrugated Waveguides
Exact calculations of transmission and reflection coefficients in surface
randomly corrugated optical waveguides are presented. As the length of the
corrugated part of the waveguide increases, there is a strong preference to
forward coupling through the lowest mode. An oscillating behavior of the
enhanced backscattering as a function of the wavelength is predicted. Although
the transport is strongly non isotropic, the analysis of the probability
distributions of the transmitted waves confirms in this configuration
distributions predicted by Random Matrix Theory for volume disorder
Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators
Correlation functions in ohmically damped
systems such as coupled harmonic oscillators or optical resonators can be
expressed as a single sum over modes (which are not power-orthogonal), with
each term multiplied by the Petermann factor (PF) , leading to "excess
noise" when . It is shown that is common rather than
exceptional, that can be large even for weak damping, and that the PF
appears in other processes as well: for example, a time-independent
perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The
coalescence of () eigenvectors gives rise to a critical point, which
exhibits "giant excess noise" (). At critical points, the
divergent parts of contributions to cancel, while time-independent
perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2
figures. Streamlined with emphasis on physics over formalism; rewrote Section
V E so that it refers to time-dependent (instead of non-equilibrium) effect
Technology challenges for space interferometry: the option of mid-infrared integrated optics
Nulling interferometry is a technique providing high angular resolution which
is the core of the space missions Darwin and the Terrestrail Planet Finder. The
first objective is to reach a deep degree of starlight cancelation in the range
6 -- 20 microns, in order to observe and to characterize the signal from an
Earth-like planet. Among the numerous technological challenges involved in
these missions, the question of the beam combination and wavefront filtering
has an important place. A single-mode integrated optics (IO) beam combiner
could support both the functions of filtering and the interferometric
combination, simplifying the instrumental design. Such a perspective has been
explored in this work within the project Integrated Optics for Darwin (IODA),
which aims at developing a first IO combiner in the mid-infrared. The solutions
reviewed here to manufacture the combiner are based on infrared dielectric
materials on one side, and on metallic conductive waveguides on the other side.
With this work, additional inputs are offered to pursue the investigation on
mid-infrared photonics devices.Comment: Accepted in Adv. in Space Researc
- …
