474 research outputs found
Ab initio vibrations in nonequilibrium nanowires
We review recent results on electronic and thermal transport in two different
quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains.
For SiNW's we compute the ballistic electronic and thermal transport properties
on equal footing, allowing us to make quantitative predictions for the
thermoelectric properties, while for the atomic gold chains we evaluate
microscopically the damping of the vibrations, due to the coupling of the chain
atoms to the modes in the bulk contacts. Both approaches are based on a
combination of density-functional theory, and nonequilibrium Green's functions.Comment: 16 pages, to appear in Progress in Nonequilibrium Green's Functions
IV (PNGF4), Eds. M. Bonitz and K. Baltzer, Glasgow, August 200
Broadening of the Derivative Discontinuity in Density Functional Theory
We clarify an important aspect of density functional theories, the broadening
of the derivative discontinuity (DD) in a quantum system, with fluctuating
particle number. Our focus is on a correlated model system, the single level
quantum dot in the regime of the Coulomb blockade. We find that the
DD-broadening is controlled by the small parameter , where
is the level broadening due to contacting and is a measure of the charging
energy. Our analysis suggests, that Kondoesque fluctuations have a tendency to
increase the DD-broadening, in our model by a factor of two.Comment: 4 pages, 2 figure
A saturated consensus linkage map of Picea abies including AFLP, SSR, STS, 5S rDNA and morphological markers
International audienc
A Molecular Platinum Cluster Junction: A Single-Molecule Switch
We present a theoretical study of the electronic transport through
single-molecule junctions incorporating a Pt6 metal cluster bound within an
organic framework. We show that the insertion of this molecule between a pair
of electrodes leads to a fully atomically engineered nano-metallic device with
high conductance at the Fermi level and two sequential high on/off switching
states. The origin of this property can be traced back to the existence of a
HOMO which consists of two degenerate and asymmetric orbitals, lying close in
energy to the Fermi level of the metallic leads. Their degeneracy is broken
when the molecule is contacted to the leads, giving rise to two resonances
which become pinned close to the Fermi level and display destructive
interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am.
Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ
Efficiency of Energy Conversion in Thermoelectric Nanojunctions
Using first-principles approaches, this study investigated the efficiency of
energy conversion in nanojunctions, described by the thermoelectric figure of
merit . We obtained the qualitative and quantitative descriptions for the
dependence of on temperatures and lengths. A characteristic temperature:
was observed. When , . When , tends to a saturation value. The dependence of
on the wire length for the metallic atomic chains is opposite to that for
the insulating molecules: for aluminum atomic (conducting) wires, the
saturation value of increases as the length increases; while for
alkanethiol (insulating) chains, the saturation value of decreases as the
length increases. can also be enhanced by choosing low-elasticity bridging
materials or creating poor thermal contacts in nanojunctions. The results of
this study may be of interest to research attempting to increase the efficiency
of energy conversion in nano thermoelectric devices.Comment: 2 figure
Numerical study of the thermoelectric power factor in ultra-thin Si nanowires
Low dimensional structures have demonstrated improved thermoelectric (TE)
performance because of a drastic reduction in their thermal conductivity,
{\kappa}l. This has been observed for a variety of materials, even for
traditionally poor thermoelectrics such as silicon. Other than the reduction in
{\kappa}l, further improvements in the TE figure of merit ZT could potentially
originate from the thermoelectric power factor. In this work, we couple the
ballistic (Landauer) and diffusive linearized Boltzmann electron transport
theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB)
electronic structure model. We calculate the room temperature electrical
conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires
(NWs). We describe the numerical formulation of coupling TB to those transport
formalisms, the approximations involved, and explain the differences in the
conclusions obtained from each model. We investigate the effects of cross
section size, transport orientation and confinement orientation, and the
influence of the different scattering mechanisms. We show that such methodology
can provide robust results for structures including thousands of atoms in the
simulation domain and extending to length scales beyond 10nm, and point towards
insightful design directions using the length scale and geometry as a design
degree of freedom. We find that the effect of low dimensionality on the
thermoelectric power factor of Si NWs can be observed at diameters below ~7nm,
and that quantum confinement and different transport orientations offer the
possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201
Effect of Thermoelectric Cooling in Nanoscale Junctions
We propose a thermoelectric cooling device based on an atomic-sized junction.
Using first-principles approaches, we investigate the working conditions and
the coefficient of performance (COP) of an atomic-scale electronic refrigerator
where the effects of phonon's thermal current and local heating are included.
It is observed that the functioning of the thermoelectric nano-refrigerator is
restricted to a narrow range of driving voltages. Compared with the bulk
thermoelectric system with the overwhelmingly irreversible Joule heating, the
4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric
refrigerator with the same due to suppressed local heating via the
quasi-ballistic electron transport and small driving voltages. Quantum nature
due to the size minimization offered by atomic-level control of properties
facilitates electron cooling beyond the expectation of the conventional
thermoelectric device theory.Comment: 8 figure
Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts
This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.
Electron- and phonon transport in silicon nanowires: an atomistic approach to thermoelectric properties
We compute both electron- and phonon transmissions in thin disordered silicon
nanowires. Our atomistic approach is based on tight-binding and empirical
potential descriptions of the electronic and phononic systems, respectively.
Surface disorder is modeled by including surface silicon vacancies. It is shown
that the average phonon- and electron transmissions through long SiNWs
containing many vacancies can be accurately estimated from the scattering
properties of the isolated vacancies using a recently proposed averaging method
[Phys. Rev. Lett. 99, 076803 (2007)]. We apply this averaging method to surface
disordered SiNWs in the diameter range 1-3 nm to compute the thermoelectric
figure of merit, ZT. It is found that the phonon transmission is affected more
by the vacancies than the electronic transmission leading to an increased
thermoelectric performance of disordered wires, in qualitative agreement with
recent experiments. The largest ZT>3 is found in strongly disordered
oriented wires with a diameter of 2 nm.Comment: 8 pages, 8 figure
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
- …
