614 research outputs found

    PHARAO Laser Source Flight Model: Design and Performances

    Full text link
    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.Comment: Accepted for publication in Review of Scientific Instrument

    On the influence of model physics on simulations of Arctic and Antarctic sea ice

    Get PDF
    Two hindcast (1983–2007) simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing) are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift) to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i) a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii) the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii) the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv) both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1°)

    Modeling afterslip and aftershocks following the 1992 Landers earthquake

    Get PDF
    One way to probe the rheology of the lithosphere and fault zones is to analyze the temporal evolution of deformation following a large earthquake. In such a case, the lithosphere responds to a known stress change that can be assessed from earthquake slip models constrained from seismology and geodesy. Here, we model the postseismic response of a fault zone that is assumed to obey a rate-strengthening rheology, where the frictional stress varies as aσ ln(ε), ε being the deformation rate and aσ > 0 a rheological parameter. The model is simple enough that these parameters can be estimated by inversion of postseismic geodetic data. We apply this approach to the analysis of geodetic displacements following the M_w 7.3, 1992, Landers earthquake. The model adjusts well the measured displacements and implies aσ ≈ 0.47–0.53 MPa. In addition, we show that aftershocks and afterslip follow the same temporal evolution and that the spatiotemporal distribution of aftershocks is consistent with the idea that they are driven by reloading of the seismogenic zone resulting from frictional afterslip

    Toward Forecasting Volcanic Eruptions using Seismic Noise

    Full text link
    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.Comment: Supplementary information: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary video: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av

    The relationships between regional Quaternary uplift, deformation across active normal faults and historical seismicity in the upper plate of subduction zones: The Capo D’Orlando Fault, NE Sicily

    Get PDF
    In order to investigate deformation within the upper plate of the Calabrian subduction zone we have mapped and modelled a sequence of Late Quaternary palaeoshorelines tectonically-deformed by the Capo D’Orlando normal fault, NE Sicily, which forms part of the actively deforming Calabrian Arc. In addition to the 1908 Messina Strait earthquake (Mw 7.1), this region has experienced damaging earthquakes, possibly on the Capo D’Orlando Fault, however, it is not considered by some to be a potential seismogenic source. Uplifted Quaternary palaeoshorelines are preserved on the hangingwall of the Capo D’Orlando Fault, indicating that hangingwall subsidence is counteracted by regional uplift, likely because of deformation associated with subduction/collision. We attempt to constrain the relationship between regional uplift, crustal extensional processes and historical seismicity, and we quantify both the normal and regional deformation signals. We report uplift variations along the strike of the fault and use a synchronous correlation technique to assign ages to palaeoshorelines, facilitating calculation of uplift rates and the fault throw-rate. Uplift rates in the hangingwall increase from 0.4 mm/yr in the centre of the fault to 0.89 mm/yr beyond its SW fault tip, suggesting 0.5 mm/yr of fault related subsidence, which implies a throw-rate of 0.63 ± 0.02 mm/yr, and significant seismic hazard. Overall, we emphasise that upper plate extension and related vertical motions complicate the process of deriving information on the subduction/collision process, such as coupling and slip distribution on the subduction interface, parameters that are commonly inferred for other subduction zones without considering upper plate deformation

    The gravitational wave detector VIRGO

    Get PDF
    International audienc

    The Virgo data acquisition system

    Get PDF
    International audienc

    Low loss coatings for the VIRGO large mirrors

    Get PDF
    présentée par L. PinardThe goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction)

    Contrasting responses of mean and extreme snowfall to climate change

    Get PDF
    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as −9 °C, compared to −14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain–snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.National Science Foundation (U.S.) (Grant AGS-1148594)United States. National Aeronautics and Space Administration (ROSES Grant 09-IDS09-0049
    corecore