1,942 research outputs found
LATTES: A new gamma-ray detector concept for South America
Currently the detection of Very High Energy gamma-rays for astrophysics rely on the measurement of the Extensive Air Showers (EAS) either using Cherenkov detectors or EAS arrays with larger field of views but also larger energy thresholds. In this talk we present a novel hybrid detector concept for a EAS array with an improved sensitivity in the lower energies (~ 100 GeV). We discuss its main features, capabilities and present preliminary results on its expected perfomances and sensitivities.This wide field of view experiment is planned to be installed at high altitude in South America making it a complementary project to the planned Cherenkov telescope experiments and a powerful tool to trigger further observations of variable sources and to detect transients phenomena
Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments
Fixed-target unpolarized Drell-Yan experiments often feature an acceptance
depending on the polar angle of the lepton tracks in the laboratory frame.
Typically leptons are detected in a defined angular range, with a dead zone in
the forward region. If the cutoffs imposed by the angular acceptance are
independent of the azimuth, at first sight they do not appear dangerous for a
measurement of the cos(2\phi)-asymmetry, relevant because of its association
with the violation of the Lam-Tung rule and with the Boer-Mulders function. On
the contrary, direct simulations show that up to 10 percent asymmetries are
produced by these cutoffs. These artificial asymmetries present qualitative
features that allow them to mimic the physical ones. They introduce some
model-dependence in the measurements of the cos(2\phi)-asymmetry, since a
precise reconstruction of the acceptance in the Collins-Soper frame requires a
Monte Carlo simulation, that in turn requires some detailed physical input to
generate event distributions. Although experiments in the eighties seem to have
been aware of this problem, the possibility of using the Boer-Mulders function
as an input parameter in the extraction of Transversity has much increased the
requirements of precision on this measurement. Our simulations show that the
safest approach to these measurements is a strong cutoff on the Collins-Soper
polar angle. This reduces statistics, but does not necessarily decrease the
precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure
On the rise of proton-proton cross-sections at high energies
The rise of the total, elastic and inelastic hadronic cross sections at high
energies is investigated by means of an analytical parametrization, with the
exponent of the leading logarithm contribution as a free fit parameter. Using
derivative dispersion relations with one subtraction, two different fits to
proton-proton and antiproton-proton total cross section and rho parameter data
are developed, reproducing well the experimental information in the energy
region 5 GeV - 7 TeV. The parametrization for the total cross sections is then
extended to fit the elastic (integrated) cross section data in the same energy
region, with satisfactory results. From these empirical results we extract the
energy dependence of several physical quantities: inelastic cross section,
ratios elastic/total, inelastic/total cross sections, ratio
total-cross-section/elastic-slope, elastic slope and optical point. All data,
fitted and predicted, are quite well described. We find a statistically
consistent solution indicating: (1) an increase of the hadronic cross sections
with the energy faster than the log-squared bound by Froissart and Martin; (2)
asymptotic limits 1/3 and 2/3 for the ratios elastic/total and inelastic/total
cross sections, respectively, a result in agreement with unitarity. These
indications corroborate recent theoretical arguments by Ya. I. Azimov on the
rise of the total cross section.Comment: 35 pages, 12 figures, discussions improved with further
clarifications, references added and updated, one note added, results and
conclusions unchanged. Version to be published in J. Phys. G: Nucl. Part.
Phy
P-P Total Cross Sections at VHE from Accelerator Data
Comparison of P-P total cross-sections estimations at very high energies -
from accelerators and cosmic rays - shows a disagreement amounting to more than
10 %, a discrepancy which is beyond statistical errors. Here we use a
phenomenological model based on the Multiple-Diffraction approach to
successfully describe data at accelerator energies. The predictions of the
model are compared with data On the basis of regression analysis we determine
confident error bands, analyzing the sensitivity of our predictions to the
employed data for extrapolation. : using data at 546 and 1.8 TeV, our
extrapolations for p-p total cross-sections are only compatible with the Akeno
cosmic ray data, predicting a slower rise with energy than other cosmic ray
results and other extrapolation methods. We discuss our results within the
context of constraints in the light of future accelerator and cosmic ray
experimental results.Comment: 26 pages aqnd 11 figure
Eikonal representation in the momentum-transfer space
By means of empirical fits to the differential cross section data on pp and
p(bar)p elastic scattering, above 10 GeV (center-of-mass energy), we determine
the eikonal in the momentum - transfer space (q^2- space). We make use of a
numerical method and a novel semi-analytical method, through which the
uncertainties from the fit parameters can be propagated up to the eikonal in
the - space. A systematic study of the effect of the experimental
information at large values of the momentum transfer is developed and discussed
in detail. We present statistical evidence that the imaginary part of the
eikonal changes sign in the q^2- space and that the position of the zero
decreases as the energy increases; after the position of the zero, the eikonal
presents a minimum and then goes to zero through negative values. We discuss
the applicability of our results in the phenomenological context, outlining
some connections with nonperturbative QCD. A short review and a critical
discussion on the main results concerning "model-independent" analyses are also
presented.Comment: 18 pages, 17 figures, 4 tables, svjour.cls. Revised discussion on the
proton's electromagnetic form factor and references added. To appear in Eur.
Phys. J.
Confronting models on cosmic ray interactions with particle physics at LHC energies
Inelastic pp collisions are dominated by soft (low momentum transfer) physics
where perturbative QCD cannot be fully applied. A deep understanding of both
soft and semi-hard processes is crucial for predictions of minimum bias and
underlying events of the now coming on line pp Large Hadron Collider (LHC).
Moreover, the interaction of cosmic ray particles entering in the atmosphere is
extremely sensitive to these soft processes and consequently cannot be
formulated from first principles. Because of this, air shower analyses strongly
rely on hadronic interaction models, which extrapolate collider data several
orders of magnitude. A comparative study of Monte Carlo simulations of pp
collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular
hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET)
and for collider physics (the PYTHIA multiparton model) is presented. The most
relevant distributions are studied including those observables from diffractive
events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
- …
