7,026 research outputs found
The Sin of Exclusion: Applicability of Trials Encouraging Omission of Radiation Therapy to Nonwhite Patients With Breast Cancer
Network sensitivity to geographical configuration
Gravitational wave astronomy will require the coordinated analysis of data
from the global network of gravitational wave observatories. Questions of how
to optimally configure the global network arise in this context. We have
elsewhere proposed a formalism which is employed here to compare different
configurations of the network, using both the coincident network analysis
method and the coherent network analysis method. We have constructed a network
model to compute a figure-of-merit based on the detection rate for a population
of standard-candle binary inspirals. We find that this measure of network
quality is very sensitive to the geographic location of component detectors
under a coincident network analysis, but comparatively insensitive under a
coherent network analysis.Comment: 7 pages, 4 figures, accepted for proceedings of the 4th Edoardo
Amaldi conference, incorporated referees' suggestions and corrected diagra
The Influence of Perceived Celebrity Endorser Credibility in Advertising on Purchase Intention of Thai Consumers
Thai advertisers have used the celebrity strategies widely to promote products while the number of studies on celebrity credibility is still limited. The aim of this research is to develop the comprehensive celebrity credibility measurement model for aiding celebrity selection in Thailand. This model was tested using the structural equation modeling approach. The sample consisted of 420 Thai consumers living in Bangkok Metropolitan area. Furthermore, in order to bridge the methodological gap regarding the celebrity and product match-up in the previous studies (Till & Busler, 1998, 2000), the present research allowed the respondents to self-select the celebrity and product in order to better reflect the true perceptions of Thai consumers. The results showed the modified celebrity credibility measurement model was validated with Thai consumers. However, only perceived attractiveness and perceived expertise were significantly related to the purchase intention. The revised model, therefore, provides advertisers and marketers with practical guidelines to select an appropriate celebrity endorser in order to enhance the effectiveness of advertising and the resulting campaigns
GaAs (AlGaAs)/CuInSe2 tandem solar cells. Technology status and future directions
Mechanically stacked, high efficiency, lightweight, and radiation resistant photovoltaic cells based on a GaAs thin film top and CuInSe2 thin film bottom cells were developed, and are considered one of the most promising devices for planar solar array applications. The highest efficiency demonstrated so far using the 4 sq cm design is 23.1 pct. AM0, one sun efficiency when measured in four-terminal configuration. The current status of the GaAs(AlGaAs)/CuInSe2 tandem cell program is presented and future directions that will lead to cell efficiencies higher than 26 pct. Air Mass Zero (AM0). A new 8 sq cm cell design developed for a two terminal and voltage matched configuration to minimize wiring complexity is discussed. Optimization of the GaAs structure for a higher end-of-life performance and further improvement of tandem cells by utilizing AlGaAs as an top absorber are described. Results of environmental tests conducted with these thin film GaAs/CuInSe2 tandem cells are also summarized
Development of tandem cells consisting of GaAs single crystal and CuInSe2/CdZnS polycrystalline thin films
The tandem cells consisting of GaAs single crystal and CuInSe2 polycrystalline thin films are being developed under the joint program of the Boeing Co. and Kopin Corp. to meet the increasing power needs for future spacecraft. The updated status of this program is presented along with experimental results such as cell performance, and radiation resistance. Other cell characteristics including the specific power of and the interconnect options for this tandem cell approach are also discussed
Progress in GaAs/CuInSe2 tandem junction solar cells
Much more power is required for spacecraft of the future than current vehicles. To meet this increased demand for power while simultaneously meeting other requirements for launch, deployment, and maneuverability, the development of higher-efficiency, lighter-weight, and more radiation resistant photovoltaic cells is essential. Mechanically stacked tandem junction solar cells based on (AlGaAs)GaAs thin film CLEFT (Cleavage of Lateral Epitaxial Film for Transfer) top cells and CuInSe2(CIS) thin film bottom cells are being developed to meet these power needs. The mechanically stacked tandem configuration is chosen due to its interconnect flexibility allowing more efficient array level performance. It also eliminates cell fabrication processing constraints associated with monolithically integrated multi-junction approaches, thus producing higher cell fabrication yields. The GaAs cell is used as the top cell due to its demonstrated high efficiency, and good radiation resistance. Furthermore, it offers a future potential for bandgap tuning using AlGaAs as the absorber to maximize cell performance. The CuInSe2 cell is used as the bottom cell due to superb radiation resistance, stability, and optimal bandgap value in combination with an AlGaAs top cell. Since both cells are incorporated as thin films, this approach provides a potential for very high specific power. This high specific power (W/kg), combined with high power density (W/sq m) resulting from the high efficiency of this approach, makes these cells ideally suited for various space applications
Atom lithography using MRI-type feature placement
We demonstrate the use of frequency-encoded light masks in neutral atom
lithography. We demonstrate that multiple features can be patterned across a
monotonic potential gradient. Features as narrow as 0.9 microns are fabricated
on silicon substrates with a metastable argon beam. Internal state manipulation
with such a mask enables continuously adjustable feature positions and feature
densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure
Une bactérie au pays des biopuces : étude du transcriptome de Salmonella dans des macrophages infectés
Sans résumé</br
Blue laser cooling transitions in Tm I
We have studied possible candidates for laser cooling transitions in
Tm in the spectral region 410 -- 420 nm. By means of saturation
absorption spectroscopy we have measured the hyperfine structure and rates of
two nearly closed cycling transitions from the ground state
to upper states
at
410.6 nm and
at
420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and
48(6) ns respectively. Decay rates from these levels to neighboring
opposite-parity levels are evaluated by means of Hartree-Fock calculations. We
conclude, that the strong transition at 410.6 nm has an optical leak rate of
less then and can be used for efficient laser cooling of
Tm from a thermal atomic beam. The hyperfine structure of two other
even-parity levels which can be excited from the ground state at 409.5 nm and
418.9 nm is also measured by the same technique. In addition we give a
calculated value of s for the rate of magnetic-dipole transition
at 1.14 m between the fine structure levels
of the ground state which can be
considered as a candidate for applications in atomic clocks.Comment: 8 pages, 5 figure
Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime
The focusing of atoms interacting with both far-detuned and resonant standing
wave fields in the thin lens regime is considered. The thin lens approximation
is discussed quantitatively from a quantum perspective. Exact quantum
expressions for the Fourier components of the density (that include all
spherical aberration) are used to study the focusing numerically. The following
lens parameters and density profiles are calculated as functions of the pulsed
field area : the position of the focal plane, peak atomic density,
atomic density pattern at the focus, focal spot size, depth of focus, and
background density. The lens parameters are compared to asymptotic, analytical
results derived from a scalar diffraction theory for which spherical aberration
is small but non-negligible (). Within the diffraction theory
analytical expressions show that the focused atoms in the far detuned case have
an approximately constant background density
while the peak density behaves as , the focal distance or
time as , the focal spot size as
, and the depth of focus as .
Focusing by the resonant standing wave field leads to a new effect, a Rabi-
like oscillation of the atom density. For the far-detuned lens, chromatic
aberration is studied with the exact Fourier results. Similarly, the
degradation of the focus that results from angular divergence in beams or
thermal velocity distributions in traps is studied quantitatively with the
exact Fourier method and understood analytically using the asymptotic results.
Overall, we show that strong thin lens focusing is possible with modest laser
powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure
- …
