1,325 research outputs found
Terrace channel design using the spatially varied flow and tractive force theories
Digitized 2007 AES.Includes bibliographical references (pages 31-32)
A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK
Static Friction between Elastic Solids due to Random Asperities
Several workers have established that the Larkin domains for two three
dimensional nonmetallic elastic solids in contact with each other at a
disordered interface are enormously large. This implies that there should be
negligible static friction per unit area in the macroscopic solid limit.
The present work argues that the fluctuations in the heights of the random
asperities at the interface that occur in the Greenwood-Williamson model can
account for static friction.Comment: Contains some improvements in the treatment of the subjec
The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes
To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance
Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure
International audienceA free-volume model of the dynamic viscosity and the self-diffusion coefficients was discussed. The temperature-pressure variations of the dynamic viscosity and the self-diffusion coefficients of small molecules were predicted. The compounds, carbon tetrachloride, cyclohexane, benzene, chlorotrifluoromethane, tetramethylsilane and methylcyclohexane were used for the investigation. The relation between microstructure, free volume and different complex thermophysical properties were emphasized by the model
Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.
Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells
Intersected EMG heatmaps and deep learning based gesture recognition
Hand gesture recognition in myoelectric based prosthetic devices is a key challenge to offering effective solutions to hand/lower arm amputees. A novel hand gesture recognition methodology that employs the difference of EMG energy heatmaps as the input of a specific designed deep learning neural network is presented. Experimental results using data from real amputees indicate that the proposed design achieves 94.31% as average accuracy with best accuracy rate of 98.96%. A comparison of experimental results between the proposed novel hand gesture recognition methodology and other similar approaches indicates the superior effectiveness of the new design
Developing Student Engagement in China Through Collaborative Action Research
As its market and society open up, China has transformed
itself from a closed agrarian socialist economy to an urban state and an economic force. This has released accumulated tourism demand, led to the development of a diversified industry, and the spread of university and vocational courses in this field. However, the industry faces challenges to recruit and retain staff, with tourism education in higher education blamed for the shortfall in numbers and quality of candidates with suitable purpose, knowledge, and passion to serve. This chapter provides a background to the development of and problems facing tourism education in China, and suggests how to support student engagement and hence the future workforce
Recommended from our members
In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997
Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections
- …
