1,322 research outputs found

    Estimating Common Principal Components in High Dimensions

    Full text link
    We consider the problem of minimizing an objective function that depends on an orthonormal matrix. This situation is encountered when looking for common principal components, for example, and the Flury method is a popular approach. However, the Flury method is not effective for higher dimensional problems. We obtain several simple majorization-minizmation (MM) algorithms that provide solutions to this problem and are effective in higher dimensions. We then use simulated data to compare them with other approaches in terms of convergence and computational time

    Flexible Clustering with a Sparse Mixture of Generalized Hyperbolic Distributions

    Full text link
    Robust clustering of high-dimensional data is an important topic because, in many practical situations, real data sets are heavy-tailed and/or asymmetric. Moreover, traditional model-based clustering often fails for high dimensional data due to the number of free covariance parameters. A parametrization of the component scale matrices for the mixture of generalized hyperbolic distributions is proposed by including a penalty term in the likelihood constraining the parameters resulting in a flexible model for high dimensional data and a meaningful interpretation. An analytically feasible EM algorithm is developed by placing a gamma-Lasso penalty constraining the concentration matrix. The proposed methodology is investigated through simulation studies and two real data sets

    Mixtures of Common Skew-t Factor Analyzers

    Full text link
    A mixture of common skew-t factor analyzers model is introduced for model-based clustering of high-dimensional data. By assuming common component factor loadings, this model allows clustering to be performed in the presence of a large number of mixture components or when the number of dimensions is too large to be well-modelled by the mixtures of factor analyzers model or a variant thereof. Furthermore, assuming that the component densities follow a skew-t distribution allows robust clustering of skewed data. The alternating expectation-conditional maximization algorithm is employed for parameter estimation. We demonstrate excellent clustering performance when our model is applied to real and simulated data.This paper marks the first time that skewed common factors have been used

    Mixtures of Shifted Asymmetric Laplace Distributions

    Full text link
    A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the general inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward. Our novel mixture modelling approach is demonstrated on both simulated and real data to illustrate clustering and classification applications. In these analyses, our mixture of shifted asymmetric Laplace distributions performs favourably when compared to the popular Gaussian approach. This work, which marks an important step in the non-Gaussian model-based clustering and classification direction, concludes with discussion as well as suggestions for future work
    corecore