1,836 research outputs found

    Inverted Singlet-Triplet Qubit Coded on a Two-Electron Double Quantum Dot

    Get PDF
    The sz=0s_z=0 spin configuration of two electrons confined at a double quantum dot (DQD) encodes the singlet-triplet qubit (STQ). We introduce the inverted STQ (ISTQ) that emerges from the setup of two quantum dots (QDs) differing significantly in size and out-of-plane magnetic fields. The strongly confined QD has a two-electron singlet ground state, but the weakly confined QD has a two-electron triplet ground state in the sz=0s_z=0 subspace. Spin-orbit interactions act nontrivially on the sz=0s_z=0 subspace and provide universal control of the ISTQ together with electrostatic manipulations of the charge configuration. GaAs and InAs DQDs can be operated as ISTQs under realistic noise conditions.Comment: 10 pages, 4 figure

    Noise-Protected Gate for Six-Electron Double-Dot Qubits

    Get PDF
    Singlet-triplet spin qubits in six-electron double quantum dots, in moderate magnetic fields, can show superior immunity to charge noise. This immunity results from the symmetry of orbitals in the second energy shell of circular quantum dots: singlet and triplet states in this shell have identical charge distributions. Our phase-gate simulations, which include 1/f1/f charge noise from fluctuating traps, show that this symmetry is most effectively exploited if the gate operation switches rapidly between sweet spots deep in the (3,3) and (4,2) charge stability regions; fidelities very close to one are predicted if subnanosecond switching can be performed.Comment: 7 pages, 3 figure

    Simple operation sequences to couple and interchange quantum information between spin qubits of different kinds

    Get PDF
    Efficient operation sequences to couple and interchange quantum information between quantum dot spin qubits of different kinds are derived using exchange interactions. In the qubit encoding of a single-spin qubit, a singlet-triplet qubit, and an exchange-only (triple-dot) qubit, some of the single-qubit interactions remain on during the entangling operation; this greatly simplifies the operation sequences that construct entangling operations. In the ideal setup, the gate operations use the intra-qubit exchange interactions only once. The limitations of the entangling sequences are discussed, and it is shown how quantum information can be converted between different kinds of quantum dot spin qubits.Comment: 9 pages, 4 figure

    Noise Analysis of Qubits Implemented in Triple Quantum Dot Systems in a Davies Master Equation Approach

    Get PDF
    We analyze the influence of noise for qubits implemented using a triple quantum dot spin system. We give a detailed description of the physical realization and develop error models for the dominant external noise sources. We use a Davies master equation approach to describe their influence on the qubit. The triple dot system contains two meaningful realizations of a qubit: We consider a subspace and a subsystem of the full Hilbert space to implement the qubit. We test the robustness of these two implementations with respect to the qubit stability. When performing the noise analysis, we extract the initial time evolution of the qubit using a Nakajima-Zwanzig approach. We find that the initial time evolution, which is essential for qubit applications, decouples from the long time dynamics of the system. We extract probabilities for the qubit errors of dephasing, relaxation and leakage. Using the Davies model to describe the environment simplifies the noise analysis. It allows us to construct simple toy models, which closely describe the error probabilities.Comment: 30 pages, 18 figure

    Two-Qubit Couplings of Singlet-Triplet Qubits Mediated by One Quantum State

    Get PDF
    We describe high-fidelity entangling gates between singlet-triplet qubits (STQs) which are coupled via one quantum state (QS). The QS can be provided by a quantum dot itself or by another confined system. The orbital energies of the QS are tunable using an electric gate close to the QS, which changes the interactions between the STQs independent of their single-qubit parameters. Short gating sequences exist for the controlled NOT (CNOT) operations. We show that realistic quantum dot setups permit excellent entangling operations with gate infidelities below 10310^{-3}, which is lower than the quantum error correction threshold of the surface code. We consider limitations from fabrication errors, hyperfine interactions, spin-orbit interactions, and charge noise in GaAs and Si heterostructures.Comment: 12 pages, 6 figure

    The stabilisation of the Nx phase in mixtures

    Get PDF
    The phase behaviour of mixtures between two symmetric dimers, CBC9CB and the ether-linked analogue CBOC9OCB was investigated by Polarizing Optical Microscopy (POM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies. The dimeric constituents are fully miscible and the construction of a temperature-composition phase diagram reveals a surprising amplification of the stability of the Nx phase in compositions of up to 37 wt% of CBOC9OCB in CBC9CB. The origin for this enhancement of stability is discussed and an explanation based on chiral recognition is developed

    Twist-bend nematic phase in cyanobiphenyls and difluoroterphenyls bimesogens

    Get PDF
    The paper reviews assignment of the low-temperature nematic phase observed in simple bimesogenic or dimeric systems based on cyanobiphenyls and difluoroterphenyls to the twist-bend nematic phase, NTB, using a range of experimental techniques. These include DSC, X-rays, Polarising Microscopy, electro-optics, birefringence and measurements of the electroclinic effect arising from flexoelectricity. An emphasis is laid on the observations of the chiral domains of opposite handedness at zero field in an otherwise achiral liquid crystalline system in this phase. These observations are a direct consequence of the structure of the twist-bend phase predicted by Ivan Dozov for achiral bent core molecules. The paper reviews the electro-optic phenomena and the observed electroclinic effect and how these observations assign it as the NTB phase. Results of the nanoscale helical pitch measurements using freeze-fracture microscopy are reviewed and discussed briefly. Results of the measurements of elastic constants especially close to the N–NTB transition are also reviewed

    Noninvasive Measurement of Dissipation in Colloidal Systems

    Full text link
    According to Harada and Sasa [Phys. Rev. Lett. 95, 130602 (2005)], heat production generated in a non-equilibrium steady state can be inferred from measuring response and correlation functions. In many colloidal systems, however, it is a nontrivial task to determine response functions, whereas details about spatial steady state trajectories are easily accessible. Using a simple conditional averaging procedure, we show how this fact can be exploited to reliably evaluate average heat production. We test this method using Brownian dynamics simulations, and apply it to experimental data of an interacting driven colloidal system

    Origin of Superconductivity in Boron-doped Diamond

    Full text link
    Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in Physical Review Letters(2004)
    corecore