1,836 research outputs found
Inverted Singlet-Triplet Qubit Coded on a Two-Electron Double Quantum Dot
The spin configuration of two electrons confined at a double quantum
dot (DQD) encodes the singlet-triplet qubit (STQ). We introduce the inverted
STQ (ISTQ) that emerges from the setup of two quantum dots (QDs) differing
significantly in size and out-of-plane magnetic fields. The strongly confined
QD has a two-electron singlet ground state, but the weakly confined QD has a
two-electron triplet ground state in the subspace. Spin-orbit
interactions act nontrivially on the subspace and provide universal
control of the ISTQ together with electrostatic manipulations of the charge
configuration. GaAs and InAs DQDs can be operated as ISTQs under realistic
noise conditions.Comment: 10 pages, 4 figure
Noise-Protected Gate for Six-Electron Double-Dot Qubits
Singlet-triplet spin qubits in six-electron double quantum dots, in moderate
magnetic fields, can show superior immunity to charge noise. This immunity
results from the symmetry of orbitals in the second energy shell of circular
quantum dots: singlet and triplet states in this shell have identical charge
distributions. Our phase-gate simulations, which include charge noise
from fluctuating traps, show that this symmetry is most effectively exploited
if the gate operation switches rapidly between sweet spots deep in the (3,3)
and (4,2) charge stability regions; fidelities very close to one are predicted
if subnanosecond switching can be performed.Comment: 7 pages, 3 figure
Simple operation sequences to couple and interchange quantum information between spin qubits of different kinds
Efficient operation sequences to couple and interchange quantum information
between quantum dot spin qubits of different kinds are derived using exchange
interactions. In the qubit encoding of a single-spin qubit, a singlet-triplet
qubit, and an exchange-only (triple-dot) qubit, some of the single-qubit
interactions remain on during the entangling operation; this greatly simplifies
the operation sequences that construct entangling operations. In the ideal
setup, the gate operations use the intra-qubit exchange interactions only once.
The limitations of the entangling sequences are discussed, and it is shown how
quantum information can be converted between different kinds of quantum dot
spin qubits.Comment: 9 pages, 4 figure
Noise Analysis of Qubits Implemented in Triple Quantum Dot Systems in a Davies Master Equation Approach
We analyze the influence of noise for qubits implemented using a triple
quantum dot spin system. We give a detailed description of the physical
realization and develop error models for the dominant external noise sources.
We use a Davies master equation approach to describe their influence on the
qubit. The triple dot system contains two meaningful realizations of a qubit:
We consider a subspace and a subsystem of the full Hilbert space to implement
the qubit. We test the robustness of these two implementations with respect to
the qubit stability. When performing the noise analysis, we extract the initial
time evolution of the qubit using a Nakajima-Zwanzig approach. We find that the
initial time evolution, which is essential for qubit applications, decouples
from the long time dynamics of the system. We extract probabilities for the
qubit errors of dephasing, relaxation and leakage. Using the Davies model to
describe the environment simplifies the noise analysis. It allows us to
construct simple toy models, which closely describe the error probabilities.Comment: 30 pages, 18 figure
Two-Qubit Couplings of Singlet-Triplet Qubits Mediated by One Quantum State
We describe high-fidelity entangling gates between singlet-triplet qubits
(STQs) which are coupled via one quantum state (QS). The QS can be provided by
a quantum dot itself or by another confined system. The orbital energies of the
QS are tunable using an electric gate close to the QS, which changes the
interactions between the STQs independent of their single-qubit parameters.
Short gating sequences exist for the controlled NOT (CNOT) operations. We show
that realistic quantum dot setups permit excellent entangling operations with
gate infidelities below , which is lower than the quantum error
correction threshold of the surface code. We consider limitations from
fabrication errors, hyperfine interactions, spin-orbit interactions, and charge
noise in GaAs and Si heterostructures.Comment: 12 pages, 6 figure
The stabilisation of the Nx phase in mixtures
The phase behaviour of mixtures between two symmetric dimers, CBC9CB and the ether-linked analogue CBOC9OCB was investigated by Polarizing Optical Microscopy (POM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies. The dimeric constituents are fully miscible and the construction of a temperature-composition phase diagram reveals a surprising amplification of the stability of the Nx phase in compositions of up to 37 wt% of CBOC9OCB in CBC9CB. The origin for this enhancement of stability is discussed and an explanation based on chiral recognition is developed
Twist-bend nematic phase in cyanobiphenyls and difluoroterphenyls bimesogens
The paper reviews assignment of the low-temperature nematic phase observed in simple bimesogenic or dimeric systems based on cyanobiphenyls and difluoroterphenyls to the twist-bend nematic phase, NTB, using a range of experimental techniques. These include DSC, X-rays, Polarising Microscopy, electro-optics, birefringence and measurements of the electroclinic effect arising from flexoelectricity. An emphasis is laid on the observations of the chiral domains of opposite handedness at zero field in an otherwise achiral liquid crystalline system in this phase. These observations are a direct consequence of the structure of the twist-bend phase predicted by Ivan Dozov for achiral bent core molecules. The paper reviews the electro-optic phenomena and the observed electroclinic effect and how these observations assign it as the NTB phase. Results of the nanoscale helical pitch measurements using freeze-fracture microscopy are reviewed and discussed briefly. Results of the measurements of elastic constants especially close to the N–NTB transition are also reviewed
Noninvasive Measurement of Dissipation in Colloidal Systems
According to Harada and Sasa [Phys. Rev. Lett. 95, 130602 (2005)], heat
production generated in a non-equilibrium steady state can be inferred from
measuring response and correlation functions. In many colloidal systems,
however, it is a nontrivial task to determine response functions, whereas
details about spatial steady state trajectories are easily accessible. Using a
simple conditional averaging procedure, we show how this fact can be exploited
to reliably evaluate average heat production. We test this method using
Brownian dynamics simulations, and apply it to experimental data of an
interacting driven colloidal system
Origin of Superconductivity in Boron-doped Diamond
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is
investigated exploiting its electronic and vibrational analogies to MgB2. The
deformation potential of the hole states arising from the C-C bond stretch mode
is 60% larger than the corresponding quantity in MgB2 that drives its high Tc,
leading to very large electron-phonon matrix elements. The calculated coupling
strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon
coupling the likely mechanism. Higher doping should increase T_c somewhat, but
effects of three dimensionality primarily on the density of states keep doped
diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in
Physical Review Letters(2004)
- …
