5,687 research outputs found

    Effects of Diffusion on Photocurrent Generation in Single-Walled Carbon Nanotube Films

    Full text link
    We have studied photocurrent generation in large carbon nanotube (CNT) films using electrodes with different spacings. We observe that the photocurrent depends strongly on the position of illumination, with maximum observed response occurring upon illumination at the electrode edges. The rate of change of the response decays exponentially, with the fastest response occurring for samples with the smallest electrode spacing. We show that the time response is due to charge carrier diffusion in low-mobility CNT films

    A Spectroscopic Analysis of the Eclipsing Short-Period Binary v505 Per and the Origin of the Lithium Dip

    Get PDF
    As a test of rotationally-induced mixing causing the well-known Li dip in older mid-F dwarfs in the local Galactic disk, we utilize high-resolution and -S/N Keck/HIRESspectroscopy to measure the Li abundance in the components of the1 Gyr, [Fe/H]=-0.15 eclipsing short-period binary V505 Per. We find A(Li)=2.7+/-0.1 and 2.4+/-0.2 in the Teff=6500 and 6450 K primary and secondary components, respectively. Previous Teff determinations and uncertainties suggest that each component is located in the midst of the Li dip. If so, their A(Li) are >=2-5 times larger than A(Li) detections and upper limits observed in the similar metallicity and intermediate-age open clusters NGC 752 and 3680, as well as the more metal-rich and younger Hyades and Praesepe. These differences are even larger if the consistent estimates of the scaling ofinitial Li with metallicity inferred from nearby disk stars, open clusters, and recent Galactic chemical evolution models are correct. Our results suggest, independently of complementary evidence based on Li/Be ratios, Be/B ratios, and Li in subgiants evolving out of the Li dip, that main-sequence angular momentum evolution is the origin of the Li dip. Specifically, our stars' A(Li) indicates tidal synchronization can be sufficiently efficient and occur early enough in short-period binary mid-F stars to reduce the effects of rotationally-induced mixing and destruction of Li occuring during the main-sequence in otherwise similar stars that are not short-period tidally-locked binaries.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific (July 2013 volume

    Postsynaptic α1-Adrenergic vasoconstriction is impaired in young patients with vasovagal syncope and is corrected by nitric oxide synthase inhibition

    Get PDF
    BACKGROUND: Syncope is a sudden transient loss of consciousness and postural tone with spontaneous recovery; the most common form is vasovagal syncope (VVS). During VVS, gravitational pooling excessively reduces central blood volume and cardiac output. In VVS, as in hemorrhage, impaired adrenergic vasoconstriction and venoconstriction result in hypotension. We hypothesized that impaired adrenergic responsiveness because of excess nitric oxide can be reversed by reducing nitric oxide. METHODS AND RESULTS: We recorded cardiopulmonary dynamics in supine syncope patients and healthy volunteers (aged 15-27 years) challenged with a dose-response using the α1-agonist phenylephrine (PE), with and without the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine, monoacetate salt (L-NMMA). Systolic and diastolic pressures among control and VVS were the same, although they increased after L-NMMA and saline+PE (volume and pressor control for L-NMMA). Heart rate was significantly reduced by L-NMMA (P<0.05) for control and VVS compared with baseline, but there was no significant difference in heart rate between L-NMMA and saline+PE. Cardiac output and splanchnic blood flow were reduced by L-NMMA for control and VVS (P<0.05) compared with baseline, while total peripheral resistance increased (P<0.05). PE dose-response for splanchnic flow and resistance were blunted for VVS compared with control after saline+PE, but enhanced after L-NMMA (P<0.001). Postsynaptic α1-adrenergic vasoconstrictive impairment was greatest in the splanchnic vasculature, and splanchnic blood flow was unaffected by PE. Forearm and calf α1-adrenergic vasoconstriction were unimpaired in VVS and unaffected by L-NMMA. CONCLUSIONS: Impaired postsynaptic α1-adrenergic vasoconstriction in young adults with VVS can be corrected by nitric oxide synthase inhibition, demonstrated with our use of L-NMMA

    Harmonization of space-borne infra-red sensors measuring sea surface temperature

    Get PDF
    Sea surface temperature (SST) is observed by a constellation of sensors, and SST retrievals are commonly combined into gridded SST analyses and climate data records (CDRs). Differential biases between SSTs from different sensors cause errors in such products, including feature artefacts. We introduce a new method for reducing differential biases across the SST constellation, by reconciling the brightness temperature (BT) calibration and SST retrieval parameters between sensors. We use the Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature Radiometer (SLSTR) as reference sensors, and the Advanced Very High Resolution Radiometer (AVHRR) of the MetOp-A mission to bridge the gap between these references. Observations across a range of AVHRR zenith angles are matched with dual-view three-channel skin SST retrievals from the AATSR and SLSTR. These skin SSTs act as the harmonization reference for AVHRR retrievals by optimal estimation (OE). Parameters for the harmonized AVHRR OE are iteratively determined, including BT bias corrections and observation error covariance matrices as functions of water-vapor path. The OE SSTs obtained from AVHRR are shown to be closely consistent with the reference sensor SSTs. Independent validation against drifting buoy SSTs shows that the AVHRR OE retrieval is stable across the reference-sensor gap. We discuss that this method is suitable to improve consistency across the whole constellation of SST sensors. The approach will help stabilize and reduce errors in future SST CDRs, as well as having application to other domains of remote sensing

    Boron Abundances Across the "Li-Be Dip" in the Hyades

    Full text link
    Dramatic deficiencies of Li in the mid-F dwarf stars of the Hyades cluster were discovered by Boesgaard & Tripicco. Boesgaard & King discovered corresponding, but smaller, deficiencies in Be in the same narrow temperature region in the Hyades. With the Space Telescope Imaging Spectrograph on the Hubble Space Telescope we investigate B abundances in the Hyades F stars to look for a potential B dip using the B I resonance line at 2496.8 A. The light elements, Li, Be, and B, are destroyed inside stars at increasingly hotter temperatures: 2.5, 3.5, and 5x10^6 K respectively. Consequently, these elements survive to increasingly greater depths in a star and their surface abundances indicate the depth and thoroughness of mixing in the star. We have (re)determined Li abundances/upper limits for 79 Hyades dwarfs, Be for 43 stars, and B in five stars. We find evidence for a small drop in the B abundance across the Li-Be dip. The B abundances for the four stars in the temperature range 6100-6730 K fit the B-Be correlation found previously by Boesgaard et al. Models of rotational mixing produce good agreement with the relative depletions of Be and B in the dip region. We have compared our nLTE B abundances for the three high B stars on either side of the Li-Be dip with those found by Duncan et al. for the two Hyades giants. This confirms the factor of ~10 decline in the B abundance in the Hyades giants as predicted by dilution due to the deepening of the surface convection zone.Comment: Accepted by Ap. J. 18 pages text + 5 tables + 15 figures = 43 page

    Ion-water clusters, bulk medium effects, and ion hydration

    Full text link
    Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions, the optimum cluster size and the hydration thermodynamics obtained without account of the bulk medium on the ion-water clustering reaction can be different from those observed in simulations of the aqueous ion. The ideas presented in this work are expected to be relevant to experimental studies that translate thermochemistry of ion-water clusters to the thermodynamics of the hydrated ion and to evolving theoretical approaches that combine high-level calculations on clusters with coarse-grained models of the medium

    Lithium and Lithium Depletion in Halo Stars on Extreme Orbits

    Full text link
    We have determined Li abundances in 55 metal-poor (3.6 < [Fe/H] < -0.7) stars with extreme orbital kinematics. We find the Li abundance in the Li-plateau stars and examine its decrease in low-temperature, low-mass stars. The Li observations are primarily from the Keck I telescope with HIRES (spectral resolution of ~48,000 and median signal-to-noise per pixel of 140). Abundances or upper limits were determined for Li for all the stars with typical errors of 0.06 dex. Our 14 stars on the Li plateau give A(Li) = log N(Li)/N(H) + 12.00 of 2.215 +-0.110, consistent with earlier results. We find a dependence of the Li abundance on metallicity as measured by [Fe/H] and the Fe-peak elements [Cr/H] and [Ni/H], with a slope of ~0.18. We also find dependences of A(Li) with the alpha elements, Mg, Ca, and Ti. For the n-capture element, Ba, the relation between A(Li) and [Ba/H] has a shallower slope of 0.13; over a range of 2.6 dex in [Ba/H], the Li abundance spans only a factor of two. We examined the possible trends of A(Li) with the characteristics of the orbits of our halo stars, but find no relationship with kinematic or dynamic properties. The stars cooler than the Li plateau are separated into three metallicity subsets. The decrease in A(Li) sets in at hotter temperatures at high metallicities than at low metallicities; this is in the opposite sense of the predictions for Li depletion from standard and non-standard models.Comment: 29 pages including 3 tables and 12 figures Accepted by The Astrophysical Journal, for the 1 November 2005 issue, v. 63

    Beryllium in the Ultra-Lithium-Deficient,Metal-Poor Halo Dwarf, G186-26

    Full text link
    The vast majority of low-metal halo dwarfs show a similar amount of Li; this has been attributed to the Li that was produced in the Big Bang. However, there are nine known halo stars with T >> 5900 K and [Fe/H] << -1.0 that are ultra-Li-deficient. We have looked for Be in the very low metallicity star, G 186-26 at [Fe/H] = -2.71, which is one of the ultra-Li-deficient stars. This star is also ultra-Be deficient. Relative to Be in the Li-normal stars at [Fe/H] = -2.7, G 182-26 is down in Be by more than 0.8 dex. Of two potential causes for the Li-deficiency -- mass-transfer in a pre-blue straggler or extra rotationally-induced mixing in a star that was initially a very rapid rotator -- the absence of Be favors the blue-straggler hypothesis, but the rotation model cannot be ruled-out completely.Comment: Accepted for Ap.J. Letters 10 pages, 4 figure

    Hierarchical fusion using vector quantization for visualization of hyperspectral images

    Get PDF
    Visualization of hyperspectral images that combines the data from multiple sensors is a major challenge due to huge data set. An efficient image fusion could be a primary key step for this task. To make the approach computationally efficient and to accommodate a large number of image bands, we propose a hierarchical fusion based on vector quantization and bilateral filtering. The consecutive image bands in the hyperspectral data cube exhibit a high degree of feature similarity among them due to the contiguous and narrow nature of the hyperspectral sensors. Exploiting this redundancy in the data, we fuse neighboring images at every level of hierarchy. As at the first level, the redundancy between the images is very high we use a powerful compression tool, vector quantization, to fuse each group. From second level onwards, each group is fused using bilateral filtering. While vector quantization removes redundancy, bilateral filter retains even the minor details that exist in individual image. The hierarchical fusion scheme helps in accommodating a large number of hyperspectral image bands. It also facilitates the midband visualization of a subset of the hyperspectral image cube. Quantitative performance analysis shows the effectiveness of the proposed method
    corecore