2,971 research outputs found
Palomar 13: a velocity dispersion inflated by binaries ?
Recently, combining radial velocities from Keck/HIRES echelle spectra with
published proper motion membership probabilities, Cote et al (2002) observed a
sample of 21 stars, probable members of Palomar 13, a globular cluster in the
Galactic halo. Their projected velocity dispersion sigma_p = 2.2 +/-0.4 km/s
gives a mass-to-light ratio M/L_V = 40 +24/-17, about one order of magnitude
larger than the usual estimate for globular clusters. We present here radial
velocities measured from three different CCD frames of commissioning
observations obtained with the new ESO/VLT instrument FLAMES (Fibre Large Array
Multi Element Spectrograph). From these data, now publicly available, we
measure the homogeneous radial velocities of eight probable members of this
globular cluster. A new projected velocity dispersion sigma_p = 0.6-0.9 +/-0.3
km/s implies Palomar 13 mass-to-light ratio M/L_V = 3-7, similar to the usual
value for globular clusters. We discuss briefly the two most obvious reasons
for the previous unusual mass-to-light ratio finding: binaries, now clearly
detected, and more homogeneous data from the multi-fibre FLAMES spectrograph.Comment: 9 pages, 2 Postscript figure
Exploring the gravitationally lensed system HE 1104-1805: Near-IR Spectroscopy
(Abridged) A new technique for the spatial deconvolution of spectra is
applied to near-IR (0.95 - 2.50 micron) NTT/SOFI spectra of the lensed,
radio-quiet quasar HE 1104-1805. The continuum of the lensing galaxy is
revealed between 1.5 and 2.5 micron. It is used in combination with previous
optical and IR photometry to infer a plausible redshift in the range 0.8 < z <
1.2. Modeling of the system shows that the lens is probably composed of the red
galaxy seen between the quasar images and a more extended component associated
with a galaxy cluster with fairly low velocity dispersion (~ 575 km/s). The
spectra of the two lensed images of the source show no trace of reddening at
the redshift of the lens nor at the redshift of the source. Additionally, the
difference between the spectrum of the brightest component a nd that of a
scaled version of the faintest component is a featureless continuum. Broad and
narrow emission lines, including the FeII features, are perfectly subtracted.
The very good quality of our spectrum makes it possible to fit precisely the
optical Fe II feature, taking into account the underlying continuum over a wide
wavelength range. HE 1104-1805 can be classified as a weak Fe II emitter.
Finally, the slope of the continuum in the brightest image is steeper than the
continuum in the faintest image and supports the finding by Wisotzki et al.
(1993) that the brightest image is microlensed. This is particularly
interesting in view of the new source reconstruction methods from
multiwavelength photometric monitoring.Comment: to be published in A&A, 8 pages, 9 postscript figure
Resolved Stellar Populations of Super-Metal-Rich Star Clusters in the Bulge of M31
We have applied the MCS image deconvolution algorithm (Magain, Courbin & Sohy
1998) to HST/WFPC2 V, I data of three M31 bulge globular clusters (G170, G177,
and G198) and control fields near each cluster. All three clusters are clearly
detected, with an increase in stellar density with decreasing radius from the
cluster centers; this is the first time that stars have been resolved in bulge
clusters in the inner regions of another galaxy. From the RGB slopes of the
clusters and the difference in I magnitude between the HB and the top of the
RGB, we conclude that these three clusters all have roughly solar metallicity,
in agreement with earlier integrated-light spectroscopic measurements. Our data
support a picture whereby the M31 bulge clusters and field stars were born from
the same metal-rich gas, early in the galaxy formation.Comment: 7 pages, 4 Postscript figures, accepted for publication in A&
Firedec: a two-channel finite-resolution image deconvolution algorithm
We present a two-channel deconvolution method that decomposes images into a
parametric point-source channel and a pixelized extended-source channel. Based
on the central idea of the deconvolution algorithm proposed by Magain, Courbin
& Sohy (1998), the method aims at improving the resolution of the data rather
than at completely removing the point spread function (PSF). Improvements over
the original method include a better regularization of the pixel channel of the
image, based on wavelet filtering and multiscale analysis, and a better
controlled separation of the point source vs. the extended source. In addition,
the method is able to simultaneously deconvolve many individual frames of the
same object taken with different instruments under different PSF conditions.
For this purpose, we introduce a general geometric transformation between
individual images. This transformation allows the combination of the images
without having to interpolate them. We illustrate the capability of our
algorithm using real and simulated images with complex diffraction-limited PSF.Comment: Accepted in A&A. An application of the technique to real data is
available in Cantale et al. http://arxiv.org/abs/1601.05192v
Régionalisation de données entachées d'erreurs de mesure par krigeage : application à la pluviométrie
Le krigeage est largement utilisé pour l'interpolation d'une variable régionalisée. On montre cependant que si les points connus sont entachés d'une erreur de mesure non stationnaire, il convient de modifier la méthode classique en introduisant la notion de variogramme structural. Dès lors le krigeage peut être abordé de façon rigoureuse. On compare cette formulation à celle de Delhomme, dont on corrige l'expression de la variance. Un exemple d'application concernant la pluviométrie est présenté. (Résumé d'auteur
On-axis spectroscopy of the host galaxies of 20 optically luminous quasars at z~0.3
We present the analysis of a sample of 20 bright low-redshift quasars
(M_B<-23 and z < 0.35) observed spectroscopically with the VLT. The FORS1
spectra, obtained in Multi Object Spectroscopy (MOS) mode, allow to observe
simultaneously the quasars and several reference stars used to spatially
deconvolve the data. Applying the MCS deconvolution method, we are able to
separate the individual spectra of the quasar and of the underlying host
galaxy. Contrary to some previous claims, we find that luminous quasars are not
exclusively hosted by massive ellipticals. Most quasar host galaxies harbour
large amounts of gas, irrespective of their morphological type. Moreover, the
stellar content of half of the hosts is a young Sc-like population, associated
with a rather low metallicity interstellar medium. A significant fraction of
the galaxies contain gas ionized at large distances by the quasar radiation.
This large distance ionization is always associated with signs of gravitational
interactions (as detected from images or disturbed rotation curves). The
spectra of the quasars themselves provide evidence that gravitational
interactions bring dust and gas in the immediate surrounding of the super
massive black hole, allowing to feed it. The quasar activity might thus be
triggered (1) in young gas-rich spiral galaxies by local events and (2) in more
evolved galaxies by gravitational interactions or collisions. The latter
mechanism gives rises to the most powerful quasars. Finally, we derive mass
models for the isolated spiral host galaxies and we show that the most reliable
estimators of the systemic redshift in the quasar spectrum are the tips of the
Ha and Hb lines.Comment: 30 pages, 19 figures, 9 tables, accepted for publication in MNRAS,
major revisio
Kinematic Masses of Super Star Clusters in M82 from High-Resolution Near-Infrared Spectroscopy
Using high-resolution (R~22,000) near-infrared (1.51 -- 1.75 microns) spectra
from Keck Observatory, we measure the kinematic masses of two super star
clusters in M82. Cross-correlation of the spectra with template spectra of cool
evolved stars gives stellar velocity dispersions of sigma_r=15.9 +/- 0.8 km/s
for MGG-9 and sigma_r=11.4 +/- 0.8 km/s for MGG-11. The cluster spectra are
dominated by the light of red supergiants, and correlate most closely with
template supergiants of spectral types M0 and M4.5. We fit King models to the
observed profiles of the clusters in archival HST/NICMOS images to measure the
half-light radii. Applying the virial theorem, we determine masses of 1.5 +/-
0.3 x 10^6 M_sun for MGG-9 and 3.5 +/- 0.7 x 10^5 M_sun for MGG-11. Population
synthesis modelling suggests that MGG-9 is consistent with a standard initial
mass function, whereas MGG-11 appears to be deficient in low-mass stars
relative to a standard IMF. There is, however, evidence of mass segregation in
the clusters, in which case the virial mass estimates would represent lower
limits.Comment: 16 pages, 8 figures; ApJ, in pres
Failure of Dexamethasone to Prevent Polymorphonuclear Leukocyte Infiltration During Experimental Acute Exudative Pyelonephritis and to Reduce Subsequent Chronic Scarring
In experimental acute exudative pyelonephritis (AEP), a role for polymorphonuclear leukocyte (PMNL) infiltration in the pathogenesis of kidney scarring has been suggested indirectly. To directly quantitate PMNL infiltration during AEP, we developed an assay for measuring the content in the kidney of myeloperoxidase (MPO), an enzyme present in PMNLs and absent in kidney tissue. This assay was a specific and sensitive marker of the kidney PMNL content. We used this assay to measure in rats with AEP the effect of dexamethasone, administered in an attempt to mitigate the acute inflammatory response. Compared with saline, dexamethasone given during AEP strikingly reduced kidney swelling, measured by the kidney-weight increase, but failed to reduce PMNL infiltration, measured by the kidney MPO content. Despite reduced kidney swelling during AEP, dexamethasone treatment failed to prevent subsequent kidney scarring, an observation indicating that PMNLs playa role in the development of permanent kidney damage during AE
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies
(abridged) Gravitationally lensed quasars can be used as powerful
cosmological and astrophysical probes. We can (i) infer the Hubble constant
based on the time-delay technique, (ii) unveil substructures along the l.o.s.
toward distant galaxies, and (iii) compare the shape and the slope of baryons
and dark matter distributions in galaxies. To reach these goals, we need
high-accuracy astrometry and morphology measurements of the lens. In this work,
we first present new astrometry for 11 lenses with measured time delays. Using
MCS deconvolution on NIC2 HST images, we reached an astrometric accuracy of
about 1-2.5 mas and an accurate shape measurement of the lens galaxy. Second,
we combined these measurements with those of 14 other systems to present new
mass models of these lenses. This led to the following results: 1) In 4
double-image quasars, we show that the influence of the lens environment on the
time delay can easily be quantified and modeled, hence putting these lenses
with high priority for time-delay determination. 2) For quadruple-image
quasars, the difficulty often encountered in reproducing the image positions to
milli-arcsec accuracy (astrometric anomaly) is overcome by explicitly including
the nearest visible galaxy in the model. However, one anomalous system
(J1131-1231) does not show any luminous perturber in its vicinity, and three
others (WFI2026-4536, WFI2033-4723, and B2045+265) have problematic modeling.
These 4 systems are the best candidates for a pertubation by a dark matter
substructure. 3) We find a significant correlation between the PA of the light
and of the mass distributions in lensing galaxies. In contrast with other
studies, we find that the ellipticity of the light and of the mass also
correlate well, suggesting that the overall spatial distribution of matter is
not very different from the baryon distribution in the inner \sim 5 kpc of
lensing galaxies.Comment: Accepted for publication in Astronomy and Astrophysics abridged
abstrac
A Population of Massive Globular Clusters in NGC 5128
We present velocity dispersion measurements of 14 globular clusters in NGC
5128 (Centarus A) obtained with the MIKE echelle spectrograph on the 6.5m
Magellan Clay telescope. These clusters are among the most luminous globular
clusters in NGC 5128 and have velocity dispersions comparable to the most
massive clusters known in the Local Group, ranging from 10 - 30 km/s. We
describe in detail our cross-correlation measurements, as well as simulations
to quantify the uncertainties. These 14 globular clusters are the brightest NGC
5128 globular clusters with surface photometry and structural parameters
measured from the Hubble Space Telescope. We have used these measurements to
derive masses and mass-to-light ratios for all of these clusters and establish
that the fundamental plane relations for globular clusters extend to an order
of magnitude higher mass than in the Local Group. The mean mass-to-light ratio
for the NGC 5128 clusters is ~3+/-1, higher than measurements for all but the
most massive Local Group clusters. These massive clusters begin to bridge the
mass gap between the most massive star clusters and the lowest-mass galaxies.
We find that the properties of NGC 5128 globular clusters overlap quite well
with the central properties of nucleated dwarf galaxies and ultracompact dwarf
galaxies. As six of these clusters also show evidence for extratidal light, we
hypothesize that at least some of these massive clusters are the nuclei of
tidally stripped dwarfs.Comment: ApJ Accepted, 15 pages, 9 figures, uses emulateapj.st
- …
