26 research outputs found
Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates
We propose a new approach to understand the origin of the pseudogap in the
cuprates, in terms of bosonic entropy. The near-simultaneous softening of a
large number of different -bosons yields an extended range of short-range
order, wherein the growth of magnetic correlations with decreasing temperature
is anomalously slow. These entropic effects cause the spectral weight
associated with the Van Hove singularity (VHS) to shift rapidly and nearly
linearly toward half filling at higher , consistent with a picture of the
VHS driving the pseudogap transition at a temperature . As a
byproduct, we develop an order-parameter classification scheme that predicts
supertransitions between families of order parameters. As one example, we find
that by tuning the hopping parameters, it is possible to drive the cuprates
across a {\it transition between Mott and Slater physics}, where a
spin-frustrated state emerges at the crossover.Comment: 24 pgs, 15 figs + Supp. Material [6pgs, 3 figs]. Major revision of
arXiv:1505.0477
Improving Brush Polymer Infrared One-Dimensional Photonic Crystals via Linear Polymer Additives
Fermi-surface-free superconductivity in underdoped (Bi,Pb)(Sr,La)2 CuO6+? (Bi2201)
10.1038/srep09739Scientific Reports5973
Fermi Surface and Pseudogap Evolution in a Cuprate Superconductor
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here, we used magnetic field–dependent scanning tunneling microscopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole-doping (p) dependence of the quasi-particle interference pattern within a single bismuth-based cuprate family, we observed a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting Tc. Surprisingly, this major reorganization of the system’s underlying electronic structure has no effect on the smoothly evolving pseudogap.Physic
Circular Nanopatterns over Large Areas from the Self-Assembly of Block Copolymers Guided by Shallow Trenches
Process Window for Seeded Growth of Arrays of Quasi-Spherical Substrate-Supported Au Nanoparticles
The controlled growth of surface-supported metal nanoparticles (NPs) is essential to a broad range of applications. To this end, we explore the seeded growth of highly ordered arrays of substrate-supported Au NPs through a fully orthogonal design of experiment (DoE) scheme applied to a reaction system consisting of HAuCl4, citrate, and hydrogen peroxide. Scanning electron microscopy in combination with digital image analysis (DIA) is used to quantitatively characterize the resultant NP populations in terms of both particle and array features. The effective optical properties of the NP arrays are additionally analyzed using spectroscopic ellipsometry (SE), allowing characteristics of the localized surface plasmon resonances (LSPRs) of the arrays to be quantified. We study the dependence of the DIA- and SE-extracted features on the different reagent concentrations through modeling using multiple linear regression with backward elimination of independent variables. A process window is identified for which uniform arrays of quasi-spherical Au NPs are grown over large surface areas. Aside from reagent concentrations the system is highly sensitive to the hydrodynamic conditions during the deposition. This issue is likely caused by an Au precursor mass-transport limitation of the reduction reaction and it is found that agitation of the growth medium is best avoided to ensure a macroscopically even deposition. Parasitic homogeneous nucleation can also be a challenge and was separately studied in a full DoE scheme with equivalent growth media but without substrates, using optical tracking of the solutions over time. Conditions yielding quasi-spherical surface-supported NPs are found to also be affiliated with strong tendencies for parasitic homogeneous nucleation and thereby loss of Au precursor, but addition of polyvinyl alcohol can possibly help alleviate this issue
