13,413 research outputs found
Josephson Vortex Qubit based on a Confocal Annular Josephson Junction
We report theoretical and experimental work on the development of a Josephson
vortex qubit based on a confocal annular Josephson tunnel junction (CAJTJ). The
key ingredient of this geometrical configuration is a periodically variable
width that generates a spatial vortex potential with bistable states. This
intrinsic vortex potential can be tuned by an externally applied magnetic field
and tilted by a bias current. The two-state system is accurately modeled by a
one-dimensional sine-Gordon like equation by means of which one can numerically
calculate both the magnetic field needed to set the vortex in a given state as
well as the vortex depinning currents. Experimental data taken at 4.2K on
high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate
the presence of a robust and finely tunable double-well potential for which
reliable manipulation of the vortex state has been classically demonstrated.
The vortex is prepared in a given potential by means of an externally applied
magnetic field, while the state readout is accomplished by measuring the
vortex-depinning current in a small magnetic field. Our proof of principle
experiment convincingly demonstrates that the proposed vortex qubit based on
CAJTJs is robust and workable.Comment: 20 pages, 11 figure
Field Cooled Annular Josephson Tunnel Junctions
We investigate the physics of planar annular Josephson tunnel junctions
quenched through their transition temperature in the presence of an external
magnetic field. Experiments carried out with long Nb/Al-AlOx/Nb annular
junctions showed that the magnetic flux trapped in the high-quality
doubly-connected superconducting electrodes forming the junction generates a
persistent current whose associated magnetic field affects the both the static
and dynamics properties of the junctions. More specifically, the field trapped
in the hole of one electrode combined with a d.c. bias current induces a
viscous flow of dense trains of Josephson vortices which manifests itself
through the sequential appearance of displaced linear slopes, Fiske step
staircases and Eck steps in the junction's current-voltage characteristic.
Furthermore, a field shift is observed in the first lobe of the magnetic
diffraction pattern. The effects of the persistent current can be mitigated or
even canceled by an external magnetic field perpendicular to the junction
plane. The radial field associated with the persistent current can be
accurately modeled with the classical phenomenological sine-Gordon model for
extended one-dimensional Josephson junctions. Extensive numerical simulations
were carried out to disclose the basic flux-flow mechanism responsible for the
appearance of the magnetically induced steps and to elucidate the role of
geometrical parameters. It was found that the imprint of the field cooling is
enhanced in confocal annular junctions which are the natural generalization of
the well studied circular annular junctions.Comment: 26 pages, 10 figures. Supercond. Sci. Technol (2020
Joint formation of bright quasars and elliptical galaxies in the young Universe
We show that the mass function of black holes expected from the past quasar
activity (both visible and obscured) is consistent with the number of dormant
black holes found in the bulges of nearby galaxies. The joint formation of
quasars and bulges is addressed by means of an analytical model for galaxy
formation, based on the hierarchical clustering of cold dark matter halos. The
model is able to reproduce the main statistical properties of both populations
under the hypotheses that (i) star formation and quasar shining follow an
anti-hierarchical order, and (ii) galaxy morphology and final black hole mass
are determined by the same physical process.Comment: 5 pages, 3 postscript figures included, proceedings of the IGRAP
meeting "Clustering at high redshift", Marseille, June 199
The Local Galaxy Density and the Arm Class of Spiral Galaxies
We have examined the effect of the environmental density on the arm
classification of an extensive sample of spiral galaxies included in the Nearby
Galaxy Catalog (Tully, 1988a). We have also explored the dependence of the arm
class of a galaxy on other factors, such as its blue absolute magnitude and its
disk-to-total mass ratio, inferred in the literature either from the gradient
of a good galaxy rotation curve or from a photometric mass decomposition
method. We have found that the arm class is strongly related to the absolute
magnitude in the mid-type spirals (in the sense that grand design galaxies are,
on average, more luminous than flocculent objects), whilst this relation is
considerably weaker in the early and late types. In general the influence of
the local density on the arm structure appears to be much weaker than that of
the absolute magnitude. The local density acts essentially in strengthening the
arm class--absolute magnitude relation for the mid types, whereas no
environmental density effects are observed in the early and late types. Using
the most recent estimates of the disk-to-total mass ratio, we do not confirm
this ratio to be a significant factor which affects the arm class;
nevertheless, owing to poor statistics and large uncertanties, the issue
remains open. Neither a local density effect nor an unambiguous bar effect on
the disk-to-total mass ratio is detectable; the latter finding may challenge
some theoretical viewpoints on the formation of bar structures.Comment: 15 pages, Latex, SISSA 102/93/A openbib.sty and 4 POSTSCRIPT figures
appende
An Analytical Approach to Inhomogeneous Structure Formation
We develop an analytical formalism that is suitable for studying
inhomogeneous structure formation, by studying the joint statistics of dark
matter halos forming at two points. Extending the Bond et al. (1991) derivation
of the mass function of virialized halos, based on excursion sets, we derive an
approximate analytical expression for the ``bivariate'' mass function of halos
forming at two redshifts and separated by a fixed comoving Lagrangian distance.
Our approach also leads to a self-consistent expression for the nonlinear
biasing and correlation function of halos, generalizing a number of previous
results including those by Kaiser (1984) and Mo & White (1996). We compare our
approximate solutions to exact numerical results within the excursion-set
framework and find them to be consistent to within 2% over a wide range of
parameters. Our formalism can be used to study various feedback effects during
galaxy formation analytically, as well as to simply construct observable
quantities dependent on the spatial distribution of objects. A code that
implements our method is publicly available at
http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added,
Figure 2 axis relabele
Reconstruction of cosmological initial conditions from galaxy redshift catalogues
We present and test a new method for the reconstruction of cosmological
initial conditions from a full-sky galaxy catalogue. This method, called
ZTRACE, is based on a self-consistent solution of the growing mode of
gravitational instabilities according to the Zel'dovich approximation and
higher order in Lagrangian perturbation theory. Given the evolved
redshift-space density field, smoothed on some scale, ZTRACE finds via an
iterative procedure, an approximation to the initial density field for any
given set of cosmological parameters; real-space densities and peculiar
velocities are also reconstructed. The method is tested by applying it to
N-body simulations of an Einstein-de Sitter and an open cold dark matter
universe. It is shown that errors in the estimate of the density contrast
dominate the noise of the reconstruction. As a consequence, the reconstruction
of real space density and peculiar velocity fields using non-linear algorithms
is little improved over those based on linear theory. The use of a
mass-preserving adaptive smoothing, equivalent to a smoothing in Lagrangian
space, allows an unbiased (although noisy) reconstruction of initial
conditions, as long as the (linearly extrapolated) density contrast does not
exceed unity. The probability distribution function of the initial conditions
is recovered to high precision, even for Gaussian smoothing scales of ~ 5
Mpc/h, except for the tail at delta >~ 1. This result is insensitive to the
assumptions of the background cosmology.Comment: 19 pages, MN style, 12 figures included, revised version. MNRAS, in
pres
A spectroscopic study of the globular Cluster NGC 4147
Indexación: Web of ScienceWe present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 +/- 0.02 and an alpha-enhancement of +0.38 +/- 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only similar to 15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw114
A quantitative investigation of the effect of a close-fitting superconducting shield on the coil-factor of a solenoid
Superconducting shields are commonly used to suppress external magnetic
interference. We show, that an error of almost an order of magnitude can occur
in the coil-factor in realistic configurations of the solenoid and the shield.
The reason is that the coil-factor is determined by not only the geometry of
the solenoid, but also the nearby magnetic environment. This has important
consequences for many cryogenic experiments involving magnetic fields such as
the determination of the parameters of Josephson junctions, as well as other
superconducting devices. It is proposed to solve the problem by inserting a
thin sheet of high-permeability material, and the result numerically tested.Comment: 3 pages, 4 figures, submitted to AP
The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54
The cosmological Li problem is the observed discrepancy between Li abundance,
A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally
assumed to be equal to the initial value A(Li)_0), and that predicted by
standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack
the Li problem by considering an alternative diagnostic, namely the surface Li
abundance of red giant branch stars that in a colour magnitude diagram populate
the region between the completion of the first dredge-up and the red giant
branch bump. We obtained high-resolution spectra with the FLAMES facility at
the Very Large Telescope for a sample of red giants in the globular cluster
M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11
dex, translating -- after taking into account the dilution due to the dredge
up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on
whether or not atomic diffusion is considered. This is the first measurement of
Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0 in old
stars obtained so far. The A(Li)_0 estimated in M54 is lower by ~0.35 dex than
A(Li)_{BBN}, hence incompatible at a level of ~3sigma. Our result shows that
this discrepancy is a universal problem concerning both the Milky Way and
extra-galactic systems. Either modifications of BBN calculations, or a
combination of atomic diffusion plus a suitably tuned additional mixing during
the main sequence, need to be invoked to solve the discrepancy.Comment: Accepted by MNRAS, 10 pages, 5 figures, 1 tabl
- …
