8,216 research outputs found
The angular resolution of air shower gamma ray telescopes
A crucial charactristic of air shower arrays in the field of high energy gamma-ray astronomy is their angular resolving power, the arrival directions being obtained by the time of flight measurements. A small air shower array-telescope is used to study the resolution in the definition of the shower front as a function of the shower size
Review of operational aspects of initial experiments utilizing the U.S. MLS
An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear
A new look at Spitzer primary transit observations of the exoplanet HD189733b
Blind source separation techniques are used to reanalyse two exoplanetary
transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC
on board the Spitzer Space Telescope at 3.6m during the "cold" era. These
observations, together with observations at other IR wavelengths, are crucial
to characterise the atmosphere of the planet HD189733b. Previous analyses of
the same datasets reported discrepant results, hence the necessity of the
reanalyses. The method we used here is based on the Independent Component
Analysis (ICA) statistical technique, which ensures a high degree of
objectivity. The use of ICA to detrend single photometric observations in a
self-consistent way is novel in the literature. The advantage of our reanalyses
over previous work is that we do not have to make any assumptions on the
structure of the unknown instrumental systematics. Such "admission of
ignorance" may result in larger error bars than reported in the literature, up
to a factor . This is a worthwhile trade-off for much higher objectivity,
necessary for trustworthy claims. Our main results are (1) improved and robust
values of orbital and stellar parameters, (2) new measurements of the transit
depths at 3.6m, (3) consistency between the parameters estimated from the
two observations, (4) repeatability of the measurement within the photometric
level of in the IR, (5) no evidence of stellar
variability at the same photometric level within 1 year.Comment: 43 pages, 18 figure
Experimental results on gamma-ray sources at E sub 0 = 10(13) - 10(14) eV
The detection of very high energy gamma ray sources has been reported in the last few years by means of extensive air shower observations. The Plateau Rosa array for the registration of the arrival directions of extensive air showers has been operating since 1980 and first results on Cygnus X-3 have been reported. Here, the status of observations of Cygnus X-3 and of the Crab Pulsar are reported
Arrival direction distribution of cosmic rays of energy 10 (18) eV
The Haverah Park air-shower experiment recorded over 8500 events with primary energy 10 to the 18th power eV between 1963 and 1983. An analysis of these events for anisotropies in celestial and galactic coordinates is reported. No very striking anisotropies are observed
Pneumatic press equipped with the Vortex system for white grapes processing: First results
The interaction between mechanical, computer and electronic technologies offers nowadays highly innovative solutions to be applied to the oenological machinery industry. Grapes pressing for the extraction of must from the grapes has a fundamental role for obtaining wines with high quality. The pneumatic presses commonly used work with a discontinuous cycle, taking on average about 3 hours for the extraction of the juice from the grapes. During this period, the presence of oxygen in contact with grapes can modify the qualitative characteristics of the future wine. The aim of the research was to study the \u201cVortex System\u201d applied to a pneumatic press and to evaluate the quality of wines obtained in reduction. The study was carried out in a modern winery in the province of Palermo (Italy) using cv. Catarratto lucido grapes. The machine used in the tests was a pneumatic press with a capacity of 1,900 / 2,500 kg by Puleo Srl company (Italy), equipped with the patent "Vortex System". It consists in the recovery of the inert gas by means of a passage and recirculation apparatus during grapes pressing allowing the must extraction in inert and controlled atmosphere, the non-oxidation of the product and a re-use of the gaseous component. Two operating modes were applied: AP (Air Pressing) mode, the traditional pressing mode in presence of oxygen, and NP (Nitrogen Pressing) mode with the Vortex System, performed under inert gas with nitrogen recovery. The following analytical determinations were performed on wines in triplicates: alcohol [%/vol], density [g/l], sugar [g/l], pH, total acidity [g/l], volatile acidity [g/l], malic acid [g/l], citric acid [g/l], tartaric acid [g/l], potassium [g/l], glycerin [g/l], ashes [g/l], absorbance at 420, 520 and 620 nm, polyphenols [mg/l], catechins [mg/l], free sulfur dioxide [mg/l], total sulfur dioxide [mg/l]. The use of the pneumatic press equipped with the Vortex System allowed to obtain excellent values of volatile acidity, absorbance at 420 nm, catechins in white wines and a rich aromatic component both in primary and secondary aromas
Pair-wise decoherence in coupled spin qubit networks
Experiments involving phase coherent dynamics of networks of spins, such as
echo experiments, will only work if decoherence can be suppressed. We show
here, by analyzing the particular example of a crystalline network of Fe8
molecules, that most decoherence typically comes from pairwise interactions
(particularly dipolar interactions) between the spins, which cause `correlated
errors'. However at very low T these are strongly suppressed. These results
have important implications for the design of quantum information processing
systems using electronic spins.Comment: 4 pages, 4 figures. Final PRL versio
Detection of an atmosphere around the super-Earth 55 Cancri e
We report the analysis of two new spectroscopic observations of the
super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera
onboard the HST. 55 Cancri e orbits so close to its parent star, that
temperatures much higher than 2000 K are expected on its surface. Given the
brightness of 55 Cancri, the observations were obtained in scanning mode,
adopting a very long scanning length and a very high scanning speed. We use our
specialized pipeline to take into account systematics introduced by these
observational parameters when coupled with the geometrical distortions of the
instrument. We measure the transit depth per wavelength channel with an average
relative uncertainty of 22 ppm per visit and find modulations that depart from
a straight line model with a 6 confidence level. These results suggest
that 55 Cancri e is surrounded by an atmosphere, which is probably
hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has
identified HCN to be the most likely molecular candidate able to explain the
features at 1.42 and 1.54 m. While additional spectroscopic observations
in a broader wavelength range in the infrared will be needed to confirm the HCN
detection, we discuss here the implications of such result. Our chemical model,
developed with combustion specialists, indicates that relatively high mixing
ratios of HCN may be caused by a high C/O ratio. This result suggests this
super-Earth is a carbon-rich environment even more exotic than previously
thought.Comment: 10 pages, 10 figures, 4 tables, Accepted for publication in Ap
A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b
The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently
one of the most widely used instruments for observing exoplanetary atmospheres,
especially with the use of the spatial scanning technique. An increasing number
of exoplanets have been studied using this technique as it enables the
observation of bright targets without saturating the sensitive detectors. In
this work we present a new pipeline for analyzing the data obtained with the
spatial scanning technique, starting from the raw data provided by the
instrument. In addition to commonly used correction techniques, we take into
account the geometric distortions of the instrument, whose impact may become
important when combined to the scanning process. Our approach can improve the
photometric precision for existing data and also push further the limits of the
spatial scanning technique, as it allows the analysis of even longer spatial
scans. As an application of our method and pipeline, we present the results
from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We
calculate the transit depth per wavelength channel with an average relative
uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully
Bayesian spectral retrieval code, which confirms the presence of water vapor
and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits
our ability to disentangle the degeneracies between the fitted atmospheric
parameters. Additional data over a broader spectral range are needed to address
this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap
Applications of Machine-Learning Algorithms for Infrared Colour Selection of Galactic Wolf-Rayet Stars
We have investigated and applied machine-learning algorithms for Infrared
Colour Selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the
GLIMPSE catalogue of the infrared objects in the Galactic plane can be
classified into different stellar populations based on the colours inferred
from their broadband photometric magnitudes (, and from 2MASS, and
the four \textit{Spitzer}/IRAC bands). The algorithms tested in this pilot
study are variants of the -Nearest Neighbours (-NN) approach, which is
ideal for exploratory studies of classification problems where interrelations
between variables and classes are complicated. The aims of this study are (1)
to provide an automated tool to select reliable WR candidates and potentially
other classes of objects, (2) to measure the efficiency of infrared colour
selection at performing these tasks and, (3) to lay the groundwork for
statistically inferring the total number of WR stars in our Galaxy. We report
the performance results obtained over a set of known objects and selected
candidates for which we have carried out follow-up spectroscopic observations,
and confirm the discovery of 4 new WR stars.Comment: Authors' version of published paper, now at MNRAS, 473, 256
- …
