1,389 research outputs found
Nonlinear Stochastic Resonance with subthreshold rectangular pulses
We analyze the phenomenon of nonlinear stochastic resonance (SR) in noisy
bistable systems driven by pulsed time periodic forces. The driving force
contains, within each period, two pulses of equal constant amplitude and
duration but opposite signs. Each pulse starts every half-period and its
duration is varied. For subthreshold amplitudes, we study the dependence of the
output signal-to-noise ratio (SNR) and the SR gain on the noise strength and
the relative duration of the pulses. We find that the SR gains can reach values
larger than unity, with maximum values showing a nonmonotonic dependence on the
duration of the pulses.Comment: 7 pages, 2 figure
A Framework to Evaluate Software Developer’s Productivity The VALORTIA Project
Currently, there is a lack in companies developing software in relation to assessing their staff’s productivity
before executing software projects, with the aim of improving effectiveness and efficiency. QuEF (Quality
Evaluation Framework) is a framework that allows defining quality management tasks based on a model.
The main purpose of this framework is twofold: improve an entity’s continuous quality, and given a context,
decide between a set of entity’s instances on the most appropriate one. Thus, the aim of this paper is to
make this framework available to evaluate productivity of professionals along software development and
select the most appropriate experts to implement the suggested project. For this goal, Valortia platform,
capable of carrying out this task by following the QuEF framework guidelines, is designed. Valortia is a
platform to certify users' knowledge on a specific area and centralize all certification management in its
model by means of providing protocols and methods for a suitable management, improving efficiency and
effectiveness, reducing cost and ensuring continuous quality.Ministerio de Ciencia e Innovación TIN2013-46928-C3-3-
Gain in Stochastic Resonance: Precise Numerics versus Linear Response Theory beyond the Two-Mode Approximation
In the context of the phenomenon of Stochastic Resonance (SR) we study the
correlation function, the signal-to-noise ratio (SNR) and the ratio of output
over input SNR, i.e. the gain, which is associated to the nonlinear response of
a bistable system driven by time-periodic forces and white Gaussian noise.
These quantifiers for SR are evaluated using the techniques of Linear Response
Theory (LRT) beyond the usually employed two-mode approximation scheme. We
analytically demonstrate within such an extended LRT description that the gain
can indeed not exceed unity. We implement an efficient algorithm, based on work
by Greenside and Helfand (detailed in the Appendix), to integrate the driven
Langevin equation over a wide range of parameter values. The predictions of LRT
are carefully tested against the results obtained from numerical solutions of
the corresponding Langevin equation over a wide range of parameter values. We
further present an accurate procedure to evaluate the distinct contributions of
the coherent and incoherent parts of the correlation function to the SNR and
the gain. As a main result we show for subthreshold driving that both, the
correlation function and the SNR can deviate substantially from the predictions
of LRT and yet, the gain can be either larger or smaller than unity. In
particular, we find that the gain can exceed unity in the strongly nonlinear
regime which is characterized by weak noise and very slow multifrequency
subthreshold input signals with a small duty cycle. This latter result is in
agreement with recent analogue simulation results by Gingl et al. in Refs. [18,
19].Comment: 22 pages, 5 eps figures, submitted to PR
Efficacy and safety of ablation for people with non-paroxysmal atrial fibrillation.
: The optimal rhythm management strategy for people with non-paroxysmal (persistent or long-standing persistent) atrial fibrilation is currently not well defined. Antiarrhythmic drugs have been the mainstay of therapy. But recently, in people who have not responded to antiarrhythmic drugs, the use of ablation (catheter and surgical) has emerged as an alternative to maintain sinus rhythm to avoid long-term atrial fibrillation complications. However, evidence from randomised trials about the efficacy and safety of ablation in non-paroxysmal atrial fibrillation is limited. : To determine the efficacy and safety of ablation (catheter and surgical) in people with non-paroxysmal (persistent or long-standing persistent) atrial fibrillation compared to antiarrhythmic drugs. : We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, conference abstracts, clinical trial registries, and Health Technology Assessment Database. We searched these databases from their inception to 1 April 2016. We used no language restrictions. : We included randomised trials evaluating the effect of radiofrequency catheter ablation (RFCA) or surgical ablation compared with antiarrhythmic drugs in adults with non-paroxysmal atrial fibrillation, regardless of any concomitant underlying heart disease, with at least 12 months of follow-up. : Two review authors independently selected studies and extracted data. We evaluated risk of bias using the Cochrane 'Risk of bias' tool. We calculated risk ratios (RRs) for dichotomous data with 95% confidence intervals (CIs) a using fixed-effect model when heterogeneity was low (I² <= 40%) and a random-effects model when heterogeneity was moderate or substantial (I² > 40%). Using the GRADE approach, we evaluated the quality of the evidence and used the GRADE profiler (GRADEpro) to import data from Review Manager 5 to create 'Summary of findings' tables. : We included three randomised trials with 261 participants (mean age: 60 years) comparing RFCA (159 participants) to antiarrhythmic drugs (102) for non-paroxysmal atrial fibrillation. We generally assessed the included studies as having low or unclear risk of bias across multiple domains, with reported outcomes generally lacking precision due to low event rates. Evidence showed that RFCA was superior to antiarrhythmic drugs in achieving freedom from atrial arrhythmias (RR 1.84, 95% CI 1.17 to 2.88; 3 studies, 261 participants; low-quality evidence), reducing the need for cardioversion (RR 0.62, 95% CI 0.47 to 0.82; 3 studies, 261 participants; moderate-quality evidence), and reducing cardiac-related hospitalisation (RR 0.27, 95% CI 0.10 to 0.72; 2 studies, 216 participants; low-quality evidence) at 12 months follow-up. There was substantial uncertainty surrounding the effect of RFCA regarding significant bradycardia (or need for a pacemaker) (RR 0.20, 95% CI 0.02 to 1.63; 3 studies, 261 participants; low-quality evidence), periprocedural complications, and other safety outcomes (RR 0.94, 95% CI 0.16 to 5.68; 3 studies, 261 participants; very low-quality evidence). : In people with non-paroxysmal atrial fibrillation, evidence suggests a superiority of RFCA to antiarrhythmic drugs in achieving freedom from atrial arrhythmias, reducing the need for cardioversion, and reducing cardiac-related hospitalisations. There was uncertainty surrounding the effect of RFCA with significant bradycardia (or need for a pacemaker), periprocedural complications, and other safety outcomes. Evidence should be interpreted with caution, as event rates were low and quality of evidence ranged from moderate to very low.<br/
Microcanonical quantum fluctuation theorems
Previously derived expressions for the characteristic function of work
performed on a quantum system by a classical external force are generalized to
arbitrary initial states of the considered system and to Hamiltonians with
degenerate spectra. In the particular case of microcanonical initial states
explicit expressions for the characteristic function and the corresponding
probability density of work are formulated. Their classical limit as well as
their relations to the respective canonical expressions are discussed. A
fluctuation theorem is derived that expresses the ratio of probabilities of
work for a process and its time reversal to the ratio of densities of states of
the microcanonical equilibrium systems with corresponding initial and final
Hamiltonians.From this Crooks-type fluctuation theorem a relation between
entropies of different systems can be derived which does not involve the time
reversed process. This entropy-from-work theorem provides an experimentally
accessible way to measure entropies.Comment: revised and extended versio
Strong coupling theory for driven tunneling and vibrational relaxation
We investigate on a unified basis tunneling and vibrational relaxation in
driven dissipative multistable systems described by their N lowest lying
unperturbed levels. By use of the discrete variable representation we derive a
set of coupled non-Markovian master equations. We present analytical treatments
that describe the dynamics in the regime of strong system-bath coupling. Our
findings are corroborated by ``ab-initio'' real-time path integral
calculations.Comment: 4 LaTeX pages including 3 figure
Phase diffusion as a model for coherent suppression of tunneling in the presence of noise
We study the stabilization of coherent suppression of tunneling in a driven
double-well system subject to random periodic function ``kicks''. We
model dissipation due to this stochastic process as a phase diffusion process
for an effective two-level system and derive a corresponding set of Bloch
equations with phase damping terms that agree with the periodically kicked
system at discrete times. We demonstrate that the ability of noise to localize
the system on either side of the double-well potenital arises from overdamping
of the phase of oscillation and not from any cooperative effect between the
noise and the driving field. The model is investigated with a square wave
drive, which has qualitatively similar features to the widely studied
cosinusoidal drive, but has the additional advantage of allowing one to derive
exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
System size resonance in coupled noisy systems and in the Ising model
We consider an ensemble of coupled nonlinear noisy oscillators demonstrating
in the thermodynamic limit an Ising-type transition. In the ordered phase and
for finite ensembles stochastic flips of the mean field are observed with the
rate depending on the ensemble size. When a small periodic force acts on the
ensemble, the linear response of the system has a maximum at a certain system
size, similar to the stochastic resonance phenomenon. We demonstrate this
effect of system size resonance for different types of noisy oscillators and
for different ensembles -- lattices with nearest neighbors coupling and
globally coupled populations. The Ising model is also shown to demonstrate the
system size resonance.Comment: 4 page
An Analytical Study of Coupled Two-State Stochastic Resonators
The two-state model of stochastic resonance is extended to a chain of coupled
two-state elements governed by the dynamics of Glauber's stochastic Ising
model. Appropriate assumptions on the model parameters turn the chain into a
prototype system of coupled stochastic resonators. In a weak-signal limit
analytical expressions are derived for the spectral power amplification and the
signal-to-noise ratio of a two-state element embedded into the chain. The
effect of the coupling between the elements on both quantities is analysed and
array-enhanced stochastic resonance is established for pure as well as noisy
periodic signals. The coupling-induced improvement of the SNR compared to an
uncoupled element is shown to be limited by a factor four which is only reached
for vanishing input noise.Comment: 29 pages, 5 figure
- …
