3,122 research outputs found

    A generalization of the Lyndon--Hochschild--Serre spectral sequence with applications to group cohomology and decompositions of groups

    Full text link
    We set up a Grothendieck spectral sequence which generalizes the Lyndon--Hochschild--Serre spectral sequence for a group extension K\mono G\epi Q by allowing the normal subgroup KK to be replaced by a subgroup, or family of subgroups which satisfy a weaker condition than normality. This is applied to establish a decomposition theorem for certain groups as fundamental groups of graphs of Poincar\'e duality groups. We further illustrate the method by proving a cohomological vanishing theorem which applies for example to Thompson's group FF.Comment: 22 page

    Post Natal Impact of Maternal Tryptophan Deficiency on Central CO2/PH Chemosensitivity

    Get PDF
    Cells and mechanisms underlying central chemosensitivity, are poorly understood and can be controversial. Our overarching hypothesis is that brainstem 5-HT and/or GABA neurons contribute to detection and response to changes in pH/CO2. Our experiments are designed to provide insight into respiratory physiology, and pathologies thought to result from chemosensory dysfunction such as the Sudden Infant Death Syndrome (SIDS). A deficiency of 5-HT resulting from maternal dietary restriction could enhance vulnerability to SIDS. It was recently shown that rat pups born to dams fed a tryptophan deficient diet have a reduced number of central 5-HT neurons and reduced ventilatory sensitivity to CO2 (Nattie et al. 2011). Unknown are the relative contributions of central vs peripheral chemoreceptors to this observation, or the residual contributions of 5-HT in the face of this deficiency. In the present study we are extending this initial description using a perfused in situ brainstem model to determine the degree of central chemosensory deficit imparted by maternal tryptophan restriction. We also repeat these studies with pharmacological blockade of a population of 5-HT receptors to illustrate remaining 5-HT and non-5-HT contributions to chemosensitivity. This work reveals important interactions between nutrition and ventilatory control that may aid in the understanding of SIDS

    Simulation of How Jack Pine Budworm (Lepidoptera: Tortricidae) Affects Economic Returns From Jack Pine Timber Production in Michigan

    Get PDF
    The impact of jack pine budworm on economic returns from jack pine timber production in Lower Michigan and management actions that might be taken to reduce this impact were evaluated with a simulation model. Results indicate that current jack pine rotation ages arc excessive and should be reduced. Insecticide application is not a viable strategy for reducing jack pine budworm impact

    A Combination Theorem for Metric Bundles

    Full text link
    We define metric bundles/metric graph bundles which provide a purely topological/coarse-geometric generalization of the notion of trees of metric spaces a la Bestvina-Feighn in the special case that the inclusions of the edge spaces into the vertex spaces are uniform coarsely surjective quasi-isometries. We prove the existence of quasi-isometric sections in this generality. Then we prove a combination theorem for metric (graph) bundles (including exact sequences of groups) that establishes sufficient conditions, particularly flaring, under which the metric bundles are hyperbolic. We use this to give examples of surface bundles over hyperbolic disks, whose universal cover is Gromov-hyperbolic. We also show that in typical situations, flaring is also a necessary condition.Comment: v3: Major revision: 56 pages 5 figures. Many details added. Characterization of convex cocompact subgroups of mapping class groups of surfaces with punctures in terms of relative hyperbolicity given v4: Final version incorporating referee comments: 63 pages 5 figures. To appear in Geom. Funct. Ana

    Cellular Classes in the Human Brain Revealed In Vivo by Heartbeat-Related Modulation of the Extracellular Action Potential Waveform

    Get PDF
    Determining cell types is critical for understanding neural circuits but remains elusive in the living human brain. Current approaches discriminate units into putative cell classes using features of the extracellular action potential (EAP); in absence of ground truth data, this remains a problematic procedure. We find that EAPs in deep structures of the brain exhibit robust and systematic variability during the cardiac cycle. These cardiac-related features refine neural classification. We use these features to link bio-realistic models generated from in vitro human whole-cell recordings of morphologically classified neurons to in vivo recordings. We differentiate aspiny inhibitory and spiny excitatory human hippocampal neurons and, in a second stage, demonstrate that cardiac-motion features reveal two types of spiny neurons with distinct intrinsic electrophysiological properties and phase-locking characteristics to endogenous oscillations. This multi-modal approach markedly improves cell classification in humans, offers interpretable cell classes, and is applicable to other brain areas and species

    Autolysis: mechanisms of action in the removal of devitalised tissue

    Get PDF
    Chronic wounds affect millions of people worldwide. In the UK alone, the cost of their treatment is estimated to be between £4.5bn and £5.1bn. The implementation of wound-bed preparation strategies remove the barriers to healing and wound debridement is a key component in preparing the wound bed for wound progression. This article aims to review one of the several debridement methods available to clinicians: autolytic debridement. Autolysis (i.e. autolytic debridement) uses the body's own enzymatic mechanisms to remove devitalised tissue in order to remove the barriers to healing. This review aims to provide clinicians working in wound care with a better understanding of the mechanisms and implications of autolytic debridement

    Knowledge Transfer and Teaching Public Administration: the Academy Model

    Get PDF
    Since the beginnings of Public Administration in the US and its accompanying education in other parts of the world, government and policy have become more complex. The education in Public Administration created a professional pathway to public service. The addition of education to Public Administration came out of the Progressive Movement in the United States to make knowledge in Public Administration more important in the face of corruption brought on by patronage appointments. When nonprofits became part the US public sector as elsewhere along with nonprofit healthcare, the complexity expanded enormously, requiring professionals to know more in what has become a multidisciplinary field of study. Given the diversity and complexity of the public sector and the need for Public Administration to embrace more knowledge from many disciplines, it stands to reason that an earlier start on the education portion of Public Administration or a pathway would be beneficial. A model of early Public Administration knowledge transfer is described and illustrated below. The Academy described is based on the US career pathways and high school academies as part of the school to work educational movement. The success of the combination of these two areas will also be pointed out in the academy described. Translation of lessons learned from the Acdemy to Europe and Asia are also considered

    A method for measuring the Neel relaxation time in a frozen ferrofluid

    Full text link
    We report a novel method of determining the average Neel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated Fe3O4 nanoparticles (diameter 13.7 nm +/- 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude (H0 = 20 kA/m) driven at frequencies of 171 kHz, 232 kHz and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Neel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m3, in agreement with previously published results

    Testing Models of Intrinsic Brightness Variations in Type Ia Supernovae, and their Impact on Measuring Cosmological Parameters

    Full text link
    For spectroscopically confirmed Type Ia supernovae we evaluate models of intrinsic brightness variations with detailed data/Monte Carlo comparisons of the dispersion in the following quantities: Hubble-diagram scatter, color difference (B-V-c) between the true B-V color and the fitted color (c) from the SALT-II light curve model, and photometric redshift residual. The data sample includes 251 ugriz light curves from the 3-season Sloan Digital Sky Survey-II, and 191 griz light curves from the Supernova Legacy Survey 3-year data release. We find that the simplest model of a wavelength-independent (coherent) scatter is not adequate, and that to describe the data the intrinsic scatter model must have wavelength-dependent variations. We use Monte Carlo simulations to examine the standard approach of adding a coherent scatter term in quadrature to the distance-modulus uncertainty in order to bring the reduced chi2 to unity when fitting a Hubble diagram. If the light curve fits include model uncertainties with the correct wavelength dependence of the scatter, we find that the bias on the dark energy equation of state parameter ww is negligible. However, incorrect model uncertainties can lead to a significant bias on the distance moduli, with up to ~0.05 mag redshift-dependent variation. For the recent SNLS3 cosmology results we estimate that this effect introduces an additional systematic uncertainty on ww of ~0.02, well below the total uncertainty. However, this uncertainty depends on the samples used, and thus this small ww-uncertainty is not guaranteed in future cosmology results.Comment: accepted by Ap
    corecore