825 research outputs found

    Frustration Effects in Antiferromagnetic FCC Heisenberg Films

    Full text link
    We study the effects of frustration in an antiferromagnetic film of FCC lattice with Heisenberg spin model including an Ising-like anisotropy. Monte Carlo (MC) simulations have been used to study thermodynamic properties of the film. We show that the presence of the surface reduces the ground state (GS) degeneracy found in the bulk. The GS is shown to depend on the surface in-plane interaction JsJ_s with a critical value at which ordering of type I coexists with ordering of type II. Near this value a reentrant phase is found. Various physical quantities such as layer magnetizations and layer susceptibilities are shown and discussed. The nature of the phase transition is also studied by histogram technique. We have also used the Green's function (GF) method for the quantum counterpart model. The results at low-TT show interesting effects of quantum fluctuations. Results obtained by the GF method at high TT are compared to those of MC simulations. A good agreement is observed.Comment: 11 pages, 19 figures, submitted to J. Phys.: Condensed Matte

    12CO emission from EP Aqr: Another example of an axi-symmetric AGB wind?

    Full text link
    The CO(1-0) and (2-1) emission of the circumstellar envelope of the AGB star EP Aqr has been observed using the IRAM PdBI and the IRAM 30-m telescope. The line profiles reveal the presence of two distinct components centered on the star velocity, a broad component extending up to ~10 km/s and a narrow component indicating an expansion velocity of ~2 km/s. An early analysis of these data was performed under the assumption of isotropic winds. The present study revisits this interpretation by assuming instead a bipolar outflow nearly aligned with the line of sight. A satisfactory description of the observed flux densities is obtained with a radial expansion velocity increasing from ~2 km/s at the equator to ~10 km/s near the poles. The angular aperture of the bipolar outflow is ~45 deg with respect to the star axis, which makes an angle of ~13 deg with the line of sight. A detailed study of the CO(1-0) to CO(2-1) flux ratio reveals a significant dependence of the temperature on the star latitude, smaller and steeper at the poles than at the equator at large distances from the star. Under the hypothesis of radial expansion and of rotation invariance about the star axis, the effective density has been evaluated in space as a function of star coordinates. Evidence is found for an enhancement of the effective density in the northern hemisphere of the star at angular distances in excess of ~3" and covering the whole longitudinal range. The peak velocity of the narrow component is observed to vary slightly with position on the sky, a variation consistent with the model and understood as the effect of the inclination of the star axis with respect to the line of sight. While the phenomenological model presented here reproduces well the general features of the observations, significant differences are also revealed, which would require a better spatial resolution to be properly described.Comment: accepted for publication in Astronomy & Astrophysic

    Morphology and kinematics of the gas envelope of the Mira binary W Aquilae

    Full text link
    We analyse ALMA observations of the 12CO(3-2) emission of the circumstellar envelope (CSE) of the Mira variable binary star W Aql. These provide, for the first time, spatially resolved Doppler velocity spectra of the CSE up to angular distances to the central star of ~ 5" (meaning some 2000 AU). The exploratory nature of the observations (only five minutes in each of two different configurations) does not allow for a detailed modelling of the properties of the CSE but provides important qualitative information on its morphology and kinematics. Emission is found to be enhanced along an axis moving from east/west to north-east/south-west when the angular distance from the central star projected on the plane of the sky increases from zero to four arcseconds. In parallel, the Doppler velocity distribution displays asymmetry along an axis moving from east/west to north-west/south-east. The results are discussed in the context of earlier observations, in particular of the dust morphology.Comment: 11 pages, 12 figure

    The morpho-kinematics of the circumstellar envelope around the AGB star EP Aqr

    Full text link
    ALMA observations of CO(1-0) and CO(2-1) emissions of the circumstellar envelope of EP Aqr, an oxygen-rich AGB star, are reported. A thorough analysis of their properties is presented using an original method based on the separation of the data-cube into a low velocity component associated with an equatorial outflow and a faster component associated with a bipolar outflow. A number of important and new results are obtained concerning the distribution in space of the effective emissivity, the temperature, the density and the flux of matter. A mass loss rate of (1.6±\pm0.4)107^{-7} solar masses per year is measured. The main parameters defining the morphology and kinematics of the envelope are evaluated and uncertainties inherent to de-projection are critically discussed. Detailed properties of the equatorial region of the envelope are presented including a measurement of the line width and a precise description of the observed inhomogeneity of both morphology and kinematics. In particular, in addition to the presence of a previously observed spiral enhancement of the morphology at very small Doppler velocities, a similarly significant but uncorrelated circular enhancement of the expansion velocity is revealed, both close to the limit of sensitivity. The results of the analysis place significant constraints on the parameters of models proposing descriptions of the mass loss mechanism, but cannot choose among them with confidence.Comment: 26 pages, 31 figures, accepted for publication in MNRA
    corecore