2,689 research outputs found
Cosmological evolution of interacting phantom (quintessence) model in Loop Quantum Gravity
The dynamics of interacting dark energy model in loop quantum cosmology (LQC)
is studied in this paper. The dark energy has a constant equation of state
and interacts with dark matter through a form . We
find for quintessence model () the cosmological evolution in LQC is the
same as that in classical Einstein cosmology; whereas for phantom dark energy
(), although there are the same critical points in LQC and classical
Einstein cosmology, loop quantum effect reduces significantly the parameter
spacetime () required by stability. If parameters and satisfy
the conditions that the critical points are existent and stable, the universe
will enter an era dominated by dark energy and dark matter with a constant
energy ratio between them, and accelerate forever; otherwise it will enter an
oscillatory regime. Comparing our results with the observations we find at
confidence level the universe will accelerate forever.Comment: 15 pages, 8 figures, to appear in JCA
Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation
We report a method of solving for canonical scalar field exact solution in a
non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger
(NLS)-type formulation in comparison to the method in the standard Friedmann
framework. We consider phantom and non-phantom scalar field cases with
exponential and power-law accelerating expansion. Analysis on effective
equation of state to both cases of expansion is also performed. We speculate
and comment on some advantage and disadvantage of using the NLS formulation in
solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and
Gra
Coupled dark energy: Towards a general description of the dynamics
In dark energy models of scalar-field coupled to a barotropic perfect fluid,
the existence of cosmological scaling solutions restricts the Lagrangian of the
field \vp to p=X g(Xe^{\lambda \vp}), where X=-g^{\mu\nu} \partial_\mu \vp
\partial_\nu \vp /2, is a constant and is an arbitrary function.
We derive general evolution equations in an autonomous form for this Lagrangian
and investigate the stability of fixed points for several different dark energy
models--(i) ordinary (phantom) field, (ii) dilatonic ghost condensate, and
(iii) (phantom) tachyon. We find the existence of scalar-field dominant fixed
points (\Omega_\vp=1) with an accelerated expansion in all models
irrespective of the presence of the coupling between dark energy and dark
matter. These fixed points are always classically stable for a phantom field,
implying that the universe is eventually dominated by the energy density of a
scalar field if phantom is responsible for dark energy. When the equation of
state w_\vp for the field \vp is larger than -1, we find that scaling
solutions are stable if the scalar-field dominant solution is unstable, and
vice versa. Therefore in this case the final attractor is either a scaling
solution with constant \Omega_\vp satisfying 0<\Omega_\vp<1 or a
scalar-field dominant solution with \Omega_\vp=1.Comment: 21 pages, 5 figures; minor clarifications added, typos corrected and
references updated; final version to appear in JCA
Relationship between earthquake fault triggering and societal behavior using ant colony optimization
In this analysis, we use the ant behaviour in simulating a framework for analysis of complex interplay amongst short time-scale deformation, long time- scale tectonics for positive stress coupling and slip interactions in earthquake genesis modeling. Using the proposed improved ant colony algorithm for global optimization the best solution ants within the search and the circulation of the optimal solution as the initial solution search, to expand its search, to avoid falling into local optimum of trigger zones analysis for earthquake occurrences. In order to validate the avalanche behaviour and corresponding nucleation we best solution as the initial solution is adopted in order to widen searching scope to avoid getting into local optimum . In this proposed framework, an ant colony model is simulated to identify the physical framework of identifying trigger basins for the precursors to geodynamic model of propagation for precursory stress-strain signals. The disturbances at trigger basins cause the collapse of a subsystem leading to stress evolution and slip nucleation. Trigger basins help identify the zone of earthquake source nucleation as an index of ? and ? for strain analysis. The stress strain network can be interpreted by the increase in steady-state energy transmitted due to redistribution of stress accumulation into the earth tectonic framework. Sand pile behaviour model has been modeled through ant colony optimization for forecasting of likelihood time of triggering influences of lithosphere on the basis of critical zones of lithosphere where dump of elastic pressure is possible. The ant colony adaptive framework consisted of vertices representing the stress-strain component and edges, representing scored transformations for global coupling effects have been constructed for dynamic monitoring of stress and strain behaviour. Triggering basins serve as harbingers of large earthquake where stress-strain interactions have been analyzed by the quasi-static mechanics of seismic precursory stress-strain propagation in the crustal lithosphere. The study shows that dynamic variation of stress drop due to saved up pressure can be modeled by ant colony framework for steady state release due to trigger and global correlation framework. The simulation framework shows that with time, spatial triggering points can be negatively coupled and these interact with lesser impact, while positive coupling occurs only with more distant zones of stress generation for geodynamic frameworks, suggesting that the structural heterogeneities within the causative rocks associated with cracks and pores can dictate the pattern of stress – strain interactions and earthquake generating processes. Keywords: crack–porous, ant colony, geo-dynamical framework, stress-strain transmission, emergenc
Curvaton Dynamics in Brane-worlds
We study the curvaton dynamics in brane-world cosmologies. Assuming that the
inflaton field survives without decay after the end of inflation, we apply the
curvaton reheating mechanism to Randall-Sundrum and to its curvature
corrections: Gauss-Bonnet, induced gravity and combined Gauss-Bonnet and
induced gravity cosmological models. In the case of chaotic inflation and
requiring suppression of possible short-wavelength generated gravitational
waves, we constraint the parameters of a successful curvaton brane-world
cosmological model. If density perturbations are also generated by the curvaton
field then, the fundamental five-dimensional mass could be much lower than the
Planck massComment: 47 pages, 1 figure, references added, to be published in JCA
Loop Quantum Cosmology: A Status Report
The goal of this article is to provide an overview of the current state of
the art in loop quantum cosmology for three sets of audiences: young
researchers interested in entering this area; the quantum gravity community in
general; and, cosmologists who wish to apply loop quantum cosmology to probe
modifications in the standard paradigm of the early universe. An effort has
been made to streamline the material so that, as described at the end of
section I, each of these communities can read only the sections they are most
interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical
and Quantum Gravity. Typos corrected, clarifications and references adde
A Quintessentially Geometric Model
We consider string inspired cosmology on a solitary -brane moving in the
background of a ring of branes located on a circle of radius . The motion of
the -brane transverse to the plane of the ring gives rise to a radion field
which can be mapped to a massive non-BPS Born-Infeld type field with a cosh
potential. For certain bounds of the brane tension we find an inflationary
phase is possible, with the string scale relatively close to the Planck scale.
The relevant perturbations and spectral indices are all well within the
expected observational bounds. The evolution of the universe eventually comes
to be dominated by dark energy, which we show is a late time attractor of the
model. However we also find that the equation of state is time dependent, and
will lead to late time Quintessence.Comment: 11 pages, 3 figures. References and comments adde
Accelerated age-related degradation of the tectorial membrane in the Ceacam16 βgal/βgal null mutant mouse, a model for late-onset human hereditary deafness DFNB113
CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16 βgal/βgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/βgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/βgal and Ceacam16βgal/βgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16βgal/βgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16βgal/βgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ~12 months, SOAEs and DPOAEs are not detected in Ceacam16βgal/βgal mice and ABR thresholds are increased by up to ~40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16βgal/βgal mice, it increases in ageing heterozygous Ceacam16+/βgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16βgal/βgal mice, is also seen in Ceacam16+/+ and Ceacam16+/βgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss
Fabrication and characterization of Eri silk fibers-based sponges for biomedical application
Cocoon-derived semi-domesticated Eri silk fibers still lack exploitation for tissue engineering applications due to their poor solubility using conventional methods. The present work explores the ability to process cocoon fibers of non-mulberry Eri silk (Samia/Philosamia ricini) into sponges through a green approach using ionic liquid (IL) â 1-buthyl-imidazolium acetate as a solvent. The formation of β-sheet structures during Eri silk/IL gelation was acquired by exposing the Eri silk/IL gels to a saturated atmosphere composed of two different solvents: (i) isopropanol/ethanol (physical stabilization) and (ii) genipin, a natural crosslinker, dissolved in ethanol (chemical crosslinking). The sponges were then obtained by freeze-drying. This approach promotes the formation of both stable and ordered non-crosslinked Eri silk fibroin matrices. Moreover, genipin-crosslinked silk fibroin sponges presenting high height recovery capacity after compression, high swelling degree and suitable mechanical properties for tissue engineering applications were produced. The incorporation of a model drug â ibuprofen â and the corresponding release study from the loaded sponges demonstrated the potential of using these matrices as effective drug delivery systems. The assessment of the biological performance of ATDC5 chondrocyte-like cells in contact with the developed sponges showed the promotion of cell adhesion and proliferation, as well as extracellular matrix production within two weeks of culture. Spongesâ intrinsic properties and biological findings open up their potential use for biomedical applications.The authors SSS, DSC, MBO, NMO acknowledge financial support
from Portuguese Foundation for Science and Technology –
FCT (Grants SFRH/BPD/45307/2008, SFRH/BPD/85790/2012,
SFRH/BD/71396/2010 and SFRH/BD/73172/2010, respectively),
‘‘Fundo Social Europeu” – FSE, and ‘‘Programa Diferencial de Potencial
Humano POPH”. This work is also financially supported by the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement n REGPOT-CT2012-316331-POLARIS and
from Fundação para a Ciência e Tecnologia (FCT) through the project
ENIGMA – PTDC/EQU-EPR/121491/2010. The laboratory work
of SCK is supported by Department of Biotechnology and Indian
Council of Medical Research, Govt of India. SCK and RLR acknowledge
their short visits either Institutes. SCK is also grateful to 3B´ s
Research Group- Biomaterials, Biodegradables and Biomimetics,
University of Minho, Portugal for providing facilities during his
short visit
- …
