7,492 research outputs found
Field effect on surface states in a doped Mott-Insulator thin film
Surface effects of a doped thin film made of a strongly correlated material
are investigated both in the absence and presence of a perpendicular electric
field. We use an inhomogeneous Gutzwiller approximation for a single band
Hubbard model in order to describe correlation effects. For low doping, the
bulk value of the quasiparticle weight is recovered exponentially deep into the
slab, but with increasing doping, additional Friedel oscillations appear near
the surface. We show that the inverse correlation length has a power-law
dependence on the doping level. In the presence of an electrical field,
considerable changes in the quasiparticle weight can be realized throughout the
system. We observe a large difference (as large as five orders of magnitude) in
the quasiparticle weight near the opposite sides of the slab. This effect can
be significant in switching devices that use the surface states for transport
Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.
The secretion of proteolytic enzymes by pathogenic microorganisms is one of the most successful strategies used by pathogens to colonize and infect the host organism. The extracellular microbial proteinases can seriously deregulate the homeostatic proteolytic cascades of the host, including the kinin-forming system, repeatedly reported to he activated during bacterial infection. The current study assigns a kinin-releasing activity to secreted proteinases of Candida spp. yeasts, the major fungal pathogens of humans. Of several Candida species studied, C. parapsilosis and C. albicans in their invasive filamentous forms are shown to produce proteinases which most effectively degrade proteinaceous kinin precursors, the kininogens. These enzymes, classified as aspartyl proteinases, have the highest kininogen-degrading activity at low pH (approx. 3.5), but the associated production of bradykinin-related peptides from a small fraction of kininogen molecules is optimal at neutral pH (6.5). The peptides effectively interact with cellular B2-type kinin receptors. Moreover, kinin-related peptides capable of interacting with inflammation-induced B1-type receptors are also formed, but with a reversed pH dependence. The presented variability of the potential extracellular kinin production by secreted aspartyl proteinases of Candida spp. is consistent with the known adaptability of these opportunistic pathogens to different niches in the host organism
Quantum optical coherence tomography of a biological sample
Quantum optical coherence tomography (QOCT) makes use of an entangled-photon
light source to carry out dispersion-immune axial optical sectioning. We
present the first experimental QOCT images of a biological sample: an
onion-skin tissue coated with gold nanoparticles. 3D images are presented in
the form of 2D sections of different orientations.Comment: 16 Pages, 6 Figure
Positive effects of a novel non-peptidyl low molecular weight radical scavenger in renal ischemia/reperfusion: a preliminary report
Ischemia/reperfusion (I/R) is one of the most common causes of acute kidney injury. Reactive oxygen species have been recognized to be an important contributor to the pathogenesis of I/R injury. We hypothesize that a non-peptidyl low molecular weight radical scavenger (IAC) therapy may counteract this factor, ultimately providing some protection after acute phase renal I/R injury. The aim of this preliminary study was to assess the ability of IAC to reduce acute kidney injury in C57BL/6 mice after 30-minute of bilateral ischemia followed by reperfusion. The rise in serum creatinine level was higher in C57BL/6 control mice after I/R when compared to IAC (1 mg)-treated mice. Control mice showed greater body weight loss compared to IAC-treated mice, and at pathology, reduced signs of tubular necrosis were also evident in IAC-treated mice. These preliminary evidences lay the basis for more comprehensive studies on the positive effects of IAC as a complementary therapeutic approach for acute phase renal I/R injury
Spin Fidelity for Three-qubit Greenberger-Horne-Zeilinger and W States Under Lorentz Transformations
Constructing the reduced density matrix for a system of three massive
spin particles described by a wave packet with Gaussian momentum
distribution and a spin part in the form of GHZ or W state, the fidelity for
the spin part of the system is investigated from the viewpoint of moving
observers in the jargon of special relativity. Using a numerical approach, it
turns out that by increasing the boost speed, the spin fidelity decreases and
reaches to a non-zero asymptotic value that depends on the momentum
distribution and the amount of momentum entanglement.Comment: 12pages, 2 figure
Statistics of multipath component clustering in an office environment
In this paper, directional MIMO measurements in an indoor office environment are presented. A 5-D ESPRIT estimation algorithm is used to extract parameters associated with discrete propagation paths, such as their azimuth of arrival, azimuth of departure, delay, and power. The estimated path parameters are grouped into clusters using the statistical K-power-means algorithm. Statistical distributions are determined for the path parameters within individual clusters and for their change between clusters. To validate the distributional choices, the goodness-of-fit to the proposed distributions is verified using statistical hypothesis tests with sufficient power
Demonstration of the Complementarity of One- and Two-Photon Interference
The visibilities of second-order (single-photon) and fourth-order
(two-photon) interference have been observed in a Young's double-slit
experiment using light generated by spontaneous parametric down-conversion and
a photon-counting intensified CCD camera. Coherence and entanglement underlie
one-and two-photon interference, respectively. As the effective source size is
increased, coherence is diminished while entanglement is enhanced, so that the
visibility of single-photon interference decreases while that of two-photon
interference increases. This is the first experimental demonstration of the
complementarity between single- and two-photon interference (coherence and
entanglement) in the spatial domain.Comment: 21 pages, 7 figure
Recommended from our members
A parametric study of fear generalization to faces and non-face objects: relationship to discrimination thresholds
Fear generalization is the production of fear responses to a stimulus that is similar—but not identical—to a threatening stimulus. Although prior studies have found that fear generalization magnitudes are qualitatively related to the degree of perceptual similarity to the threatening stimulus, the precise relationship between these two functions has not been measured systematically. Also, it remains unknown whether fear generalization mechanisms differ for social and non-social information. To examine these questions, we measured perceptual discrimination and fear generalization in the same subjects, using images of human faces and non-face control stimuli (“blobs”) that were perceptually matched to the faces. First, each subject’s ability to discriminate between pairs of faces or blobs was measured. Each subject then underwent a Pavlovian fear conditioning procedure, in which each of the paired conditioned stimuli (CS) were either followed (CS+) or not followed (CS−) by a shock. Skin conductance responses (SCRs) were also measured. Subjects were then presented with the CS+, CS− and five levels of a CS+-to-CS− morph continuum between the paired stimuli, which were identified based on individual discrimination thresholds. Finally, subjects rated the likelihood that each stimulus had been followed by a shock. Subjects showed both autonomic (SCR-based) and conscious (ratings-based) fear responses to morphs that they could not discriminate from the CS+ (generalization). For both faces and non-face objects, fear generalization was not found above discrimination thresholds. However, subjects exhibited greater fear generalization in the shock likelihood ratings compared to the SCRs, particularly for faces. These findings reveal that autonomic threat detection mechanisms in humans are highly sensitive to small perceptual differences between stimuli. Also, the conscious evaluation of threat shows broader generalization than autonomic responses, biased towards labeling a stimulus as threatening
Quantum-inspired interferometry with chirped laser pulses
We introduce and implement an interferometric technique based on chirped
femtosecond laser pulses and nonlinear optics. The interference manifests as a
high-visibility (> 85%) phase-insensitive dip in the intensity of an optical
beam when the two interferometer arms are equal to within the coherence length
of the light. This signature is unique in classical interferometry, but is a
direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits
all the metrological advantages of the quantum interferometer, but with signals
at least 10^7 times greater. In particular we demonstrate enhanced resolution,
robustness against loss, and automatic dispersion cancellation. Our
interferometer offers significant advantages over previous technologies, both
quantum and classical, in precision time delay measurements and biomedical
imaging.Comment: 6 pages, 4 figure
- …
