619 research outputs found
Thermodynamics of explosions
We present our first attempts to formulate a thermodynamics-like description
of explosions. The motivation is partly a fundamental interest in
non-equilibrium statistical physics, partly the resemblance of an explosion to
the late stages of a heavy-ion collision. We perform numerical simulations on a
microscopic model of interacting billiard-ball like particles, and we analyse
the results of such simulations trying to identify collective variables
describing the degree of equilibrium during the explosion.Comment: 6 pages. Talk presented at "Bologna 2000 - Structure of the nucleus"
international conference, May 29 - June 3, Bologna, Italy. Shortened version,
to appear in the Proceeding
Equilibration and freeze-out in an exploding system
We use a simple gas model to study non-equilibrium aspects of the
multiparticle dynamics relevant to heavy ion collisions. By performing
numerical simulations for various initial conditions we identify several
characteristic features of the fast dynamics occurring in implosion-explosion
like processes.Comment: 4 pages, submitted to PR
The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory
The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given
The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory
The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given
Soft versus Hard Dynamics for Field-driven Solid-on-Solid Interfaces
Analytical arguments and dynamic Monte Carlo simulations show that the
microstructure of field-driven Solid-on-Solid interfaces depends strongly on
the dynamics. For nonconservative dynamics with transition rates that factorize
into parts dependent only on the changes in interaction energy and field
energy, respectively (soft dynamics), the intrinsic interface width is
field-independent. For non-factorizing rates, such as the standard Glauber and
Metropolis algorithms (hard dynamics), it increases with the field.
Consequences for the interface velocity and its anisotropy are discussed.Comment: 9 pages LaTex with imbedded .eps figs. Minor revision
Microstructure and velocity of field-driven Ising interfaces moving under a soft stochastic dynamic
We present theoretical and dynamic Monte Carlo simulation results for the
mobility and microscopic structure of 1+1-dimensional Ising interfaces moving
far from equilibrium in an applied field under a single-spin-flip ``soft''
stochastic dynamic. The soft dynamic is characterized by the property that the
effects of changes in field energy and interaction energy factorize in the
transition rate, in contrast to the nonfactorizing nature of the traditional
Glauber and Metropolis rates (``hard'' dynamics). This work extends our
previous studies of the Ising model with a hard dynamic and the unrestricted
SOS model with soft and hard dynamics. [P.A. Rikvold and M. Kolesik, J. Stat.
Phys. 100, 377 (2000); J. Phys. A 35, L117 (2002); Phys. Rev. E 66, 066116
(2002).] The Ising model with soft dynamics is found to have closely similar
properties to the SOS model with the same dynamic. In particular, the local
interface width does not diverge with increasing field, as it does for hard
dynamics. The skewness of the interface at nonzero field is very weak and has
the opposite sign of that obtained with hard dynamics.Comment: 19 pages LaTex with 7 imbedded figure
Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model
Chiral phase properties of finite size hadronic systems are investigated
within the Nambu--Jona-Lasinio model. Finite size effects are taken into
account by making use of the multiple reflection expansion. We find that, for
droplets with relatively small baryon numbers, chiral symmetry restoration is
enhanced by the finite size effects. However the radius of the stable droplet
does not change much, as compared to that without the multiple reflection
expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.
- …
