549 research outputs found
Stability and instability of thermocapillary convection in models of the float-zone crystal-growth process
This project was concerned with the determination of conditions of guaranteed stability and instability for thermocapillary convection in a model of the float-zone crystal-growth process. This model, referred to as the half-zone, was studied extensively, both experimentally and theoretically. Our own earlier research determined, using energy-stability theory, sufficient conditions for stability to axisymmetric disturbances. Nearly all results computed were for the case of a liquid with Prandtl Number Pr = 1. Attempts to compute cases for higher Prandtl numbers to allow comparison with the experimental results of other researchers were unsuccessful, but indicated that the condition guaranteeing stability against axisymmetric disturbances would be a value of the Marangoni number (Ma), significantly higher than that at which oscillatory convection was observed experimentally. Thus, additional results were needed to round out the stability picture for this model problem. The research performed under this grant consisted of the following: (1) computation of energy-stability limits for non-axisymmetric disturbances; (2) computation of linear-stability limits for axisymmetric and non-axisymmetric disturbances; (3) numerical simulation of the basic state for half- and full-zones with a deformable free surface; and (4) incorporation of radiation heat transfer into a model energy-stability problem. Each of these is summarized briefly below
Convective effects in float-zone and Czochralski melts
The hydrodynamics of crystal-growth melts is a relatively new research area. Numerical modeling of these processes is necessary. The work discussed herein is in two parts: numerical simulations of the flow in a Czochralski melt, and also of that in a float zone. In addition, for the float-zone case, energy stability theory will be used to determine stability bounds for the onset of oscillatory thermo-capillary flow. Convective effects in crystal-growth melts arise from a variety of mechanisms. Temperature gradients both in the direction of gravity and normal to it give rise to convection due to buoyancy effects. Rotation of the crucible and/or crystal causes a forced convection which may augment or oppose the buoyancy-driven flow. Finally, thermo-capillary forces (due to the variation of surface tension with temperature) drive surface motions which in turn generate convection in the bulk fluid. All of these mechanisms are present in either Czochralski or float-zone growth. The objective of the Czochralski modeling is to develop an accurate numerical simulation of the flow in a Czochralski silicon melt and to investigate the effects of various parameters on the flow properties. Like some earlier investigations, the intent is to simulate the effects of buoyancy, forced and thermo-capillary convection, including unsteady effects. Unlike earlier work, the aim is to include the effects of a variable free surface and freezing interface and, possibly incorporate nonaxisymmetric effects
Study of Turbofan Engines Designed for Low Enery Consumption
Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified
Study of unconventional aircraft engines designed for low energy consumption
A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified
Energy efficient engine: Preliminary design and integration studies
Parametric design and mission evaluations of advanced turbofan configurations were conducted for future transport aircraft application. Economics, environmental suitability and fuel efficiency were investigated and compared with goals set by NASA. Of the candidate engines which included mixed- and separate-flow, direct-drive and geared configurations, an advanced mixed-flow direct-drive configuration was selected for further design and evaluation. All goals were judged to have been met except the acoustic goal. Also conducted was a performance risk analysis and a preliminary aerodynamic design of the 10 stage 23:1 pressure ratio compressor used in the study engines
Efeito da concentração de compostos do pré-tratamento de biomassa florestal no crescimento de Saccharomyces cerevisiae industrial.
Editores técnicos: Marcílio José Thomazini, Elenice Fritzsons, Patrícia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos
Estudo da cinética de multiplicação e de viabilidade celular de Saccharomyces cerevisiae.
Resumo
Influência da concentração de compostos do pré-tratamento de biomassa florestal no crescimento de S. cerevisiae.
Influência de compostos do pré-tratamento de biomassa florestal no crescimento de Saccharomyces cerevisiae JP1.
Resumo. Disponível online. MIPE
Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults
Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery
- …
