2,515 research outputs found

    Discovery of Localized Regions of Excess 10-TeV Cosmic Rays

    Full text link
    An analysis of 7 years of Milagro data performed on a 10-degree angular scale has found two localized regions of excess of unknown origin with greater than 12 sigma significance. Both regions are inconsistent with gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6 sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at ~10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.Comment: Submitted to PhysRevLet

    The Study of TeV Variability and Duty Cycle of Mrk 421 from 3 Years of Observations with the Milagro Observatory

    Full text link
    TeV flaring activity with time scales as short as tens of minutes and an orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421). The TeV emission from Mrk 421 is believed to be produced by leptonic synchrotron self-Compton (SSC) emission. In this scenario, correlations between the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly explained and the activity (measured as duty cycle) of the source at TeV energies is expected to be equal or less than that observed in X-rays if only SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish limits on its variability at different time scales, we continuously observed Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a statistical significance of 7.1 standard deviations between 2005 September 21 and 2008 March 15. The observed spectrum is consistent with previous observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies above 1 TeV for different hypothesis of the baseline flux and for different flare selections and we compare our results with the X-ray duty cycle estimated by Resconi et al. 2009. The robustness of the results is discussed.Comment: 27 pages, 6 figures, ApJ accepte

    Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing

    Full text link
    A simple model of the neutrino mixing is considered, which contains only one right-handed neutrino field, coupled via the mass term to the three usual left-handed fields. This is a simplest model that allows for three-flavour neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9

    Results from the Milagrito experiment

    Get PDF
    The Milagro water Cherenkov detector near Los Alamos, New Mexico is the first air shower detector capable of continuously monitoring the sky at energies between 500 GeV and 20 TeV. Preliminary results of the Milagro experiment are presented. A predecessor of the Milagro detector, Milagrito, was operational from February 1997 to May 1998. Milagrito consisted of 228 8″ photomultiplier tubes (PMTs) arranged in a grid with a 2.8 meter spacing and submerged in 1–2 meters of water. During its operation, Milagrito collected in excess of 9 billion events with a median energy of about 3 TeV. The detector’s sensitivity extends below 1 TeV for showers from near zenith. The results of an all sky search for the Milagrito data for both transient and DC sources will be presented, including the Crab Nebula and active galaxies Markarian 501 and 421, which are known sources of TeV gamma-rays. Also presented will be a study of the TeV emission from gamma ray bursts (GRBs) in Milagrito’s field of view detected by the BATSE experiment on the Compton Gamma-Ray Observatory

    TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro

    Full text link
    A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma Ray Observatory. Eight candidate sources of TeV emission are detected with pre-trials significance >4.5σ>4.5\sigma in the region of Galactic longitude l[30,220]l\in[30^\circ,220^\circ] and latitude b[10,10]b\in[-10^\circ,10^\circ]. Four of these sources, including the Crab nebula and the recently published MGRO J2019+37, are observed with significances >4σ>4\sigma after accounting for the trials involved in searching the 3800 square degree region. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.Comment: Submitted to Ap

    Milagro: A TeV gamma-ray monitor of the Northern Hemisphere Sky

    Get PDF
    A new type of very high energy (\u3e a few 100 GeV) gamma-ray observatory, Milagro, has been built with a large field of view of \u3e1 steradian and nearly 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 mpond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescopes parameters, such as effective area and angular resolution. Milagro is larger and consists of two layers of photomultiplier tubes. The bottom layer detects penetrating particles that are used to reject the background of cosmic-ray initiated showers

    First results of a study of TeV emission from GRBs in Milagrito

    Get PDF
    Milagrito, a detector sensitive to γ-rays at TeV energies, monitored the northern sky during the period February 1997 through May 1998. With a large field of view and high duty cycle, this instrument was used to perform a search for TeV counterparts to γ-ray bursts. Within the Milagrito field of view 54 γ-ray bursts at keV energies were observed by the Burst And Transient Satellite Experiment (BATSE) aboard the Compton Gamma-Ray Observatory. This paper describes the results of a preliminary analysis to search for TeV emission correlated with BATSE detected bursts. Milagrito detected an excess of events coincident both spatially and temporally with GRB 970417a, with chance probability 2.8×10−5 within the BATSE error radius. No other significant correlations were detected. Since 54 bursts were examined the chance probability of observing an excess with this significance in any of these bursts is 1.5×10−3. The statistical aspects and physical implications of this result are discussed

    Milagro: A TeV observatory for gamma-ray bursts

    Get PDF
    Observation of prompt TeV γ-rays from GRBs requires a new type of detector to overcome the low duty factor and small field of view of current TeV observatories. Milagro is such a new type of very high energy (\u3e a few 100 GeV) gamma-ray observatory, which has a large field of view of \u3e1 steradian and 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 m pond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescope’s parameters, such as effective area and angular resolution. Milagro will have improved flux sensitivity over Milagrito due to larger effective area, better angular resolution and cosmic-ray background rejection
    corecore