8,824 research outputs found

    The Running BFKL: Resolution of Caldwell's Puzzle

    Get PDF
    The HERA data on the proton structure function, F2(x,Q2)F_2(x,Q^2), at very small xx and Q2Q^2 show the dramatic departure of the logarithmic slope, F2/logQ2\partial F_2/\partial\log Q^2, from theoretical predictions based on the DGLAP evolution. We show that the running BFKL approach provides the quantitative explanation for the observed xx and/or Q2Q^2 -dependence of F2/logQ2\partial F_2/\partial\log Q^2.Comment: 7 pages, Latex, 4 Figures, P

    The hard scale in the exclusive rho-meson production in diffractive DIS

    Get PDF
    We re-examine the issue of the pQCD factorization scale in the exclusive rho production in diffractive DIS from the k_t-factorization point of view. We find that this scale differs significantly from, and possesses much flatter Q^2 behavior than widely used value (Q^2 + m_\rho^2)/4. With these results in mind, we discuss the Q^2 shape of the rho meson production cross section. We introduce rescaled cross sections, which might provide further insight into the dynamics of rho production. We also comment on the recent ZEUS observation of energy-independent ratio sigma(gamma* p --> rho p) / sigma_{tot}(gamma*p).Comment: 14 pages, 7 eps figure

    Possible Odderon discovery at HERA via charge asymmetry in the diffractive pi+pi- production

    Full text link
    We discuss how the evasive Odderon signal can be enhanced by final state interactions. We suggest the charge asymmetry of pion spectra in diffractive pi+pi- photoproduction as a promising signature of the Odderon exchange.Comment: 4 pages, To appear in Proceedings of the 9th International Workshop on Deep Inelastic Scattering (DIS2001), Bologna, Italy, 27 Apr. - 1 May 200

    Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models

    Get PDF
    We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters and the intensity in an emission decay curve are not proportional, but the density is a time integral of the intensity. The integral relation is crucial to correctly interpret non-single-exponential decay. We derive the proper normalization for both a discrete and a continuous distribution of rates, where every decay component is multiplied by its radiative decay rate. A central result of our paper is the derivation of the emission decay curve when both radiative and nonradiative decays are independently distributed. In this case, the well-known emission quantum efficiency can no longer be expressed by a single number, but is also distributed. We derive a practical description of non-single-exponential emission decay curves in terms of a single distribution of decay rates; the resulting distribution is identified as the distribution of total decay rates weighted with the radiative rates. We apply our analysis to recent examples of colloidal quantum dot emission in suspensions and in photonic crystals, and we find that this important class of emitters is well described by a log-normal distribution of decay rates with a narrow and a broad distribution, respectively. Finally, we briefly discuss the Kohlrausch stretched-exponential model, and find that its normalization is ill defined for emitters with a realistic quantum efficiency of less than 100%.\ud \u

    Non-linear BFKL dynamics: color screening vs. gluon fusion

    Full text link
    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken xx is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is Rc0.20.3R_c\simeq 0.2-0.3 fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter Rc2/8B\sim R_c^2/8B, with the diffraction cone slope BB standing for the characteristic size of the interaction region. It should slowly 1/lnQ2\propto 1/\ln Q^2 decrease at large Q2Q^2. Smallness of the ratio Rc2/8BR_c^2/8B makes the non-linear effects rather weak even at lowest Bjorken xx available at HERA. We report the results of our studies of the non-linear BFKL equation which has been generalized to incorporate the running coupling and the screening radius RcR_c as the infrared regulator.Comment: 16 pages, 2 figures, version accepted for publication, references adde

    Initial dynamics of the EKG during an electrical defibrillation of the heart

    Get PDF
    In tests on 11 mature dogs, immobilized by means of an automatic blocking and synchronization system, artefact free EKG were obtained, beginning 0.04-0.06 sec after passage of a defibrillating current. Different versions of the start of fibrillation were noted, in application of the defibrillating stimulus in the early phase of the cardiac cycle. A swinging phenomenon, increasing amplitude, of fibrillation was noted for 0.4-1.5 sec after delivery of a subthreshold stimulus. Conditions for a positive outcome of repeated defibrillation were found, and a relationship was noted between the configuration of the exciting process with respect to the lines of force of the defibrillating current and the defibrillation threshold. It was shown that the initial EKG dynamics after defibrillation is based on a gradual shift of the pacemaker from the myocardium of the ventricles to the sinus node, through phases of atrioventricular and atrial automatism
    corecore