328 research outputs found

    Development of a Thermal Management System for Electrified Aircraft

    Get PDF
    This paper describes the development and optimization of a conceptual thermal management system for electrified aircraft. Here, a vertical takeoff and landing (VTOL) vehicle is analyzed with the following electrically sourced heat loads considered: motors, generators, rectifiers, and inverters. The vehicle will employ liquid-cooling techniques in order to acquire, transport, and reject waste heat from the vehicle. The purpose of this paper is to threefold: 1) Present a potential modeling framework for system level thermal management system simulation, 2) Analyze typical system characteristics, and 3) Perform optimization on a system developed for a specific vehicle to minimize weight gain, power utilization, and drag. Additionally, the paper will study the design process, specifically investigating the differences between steady state and transient sizing, comparing simulation techniques with a lower fidelity option and quantifying expected error

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Harmonic Forcing Amplitude Effects in Globally Unstable Transonic Wing Flow

    Get PDF
    This work concerns the phenomenon of shock buffet and its mutual interaction with the flexible wing structure. The latter aspect is key to our contribution, since, even though renewed interest in edge-of-the-envelope flow unsteadiness can be observed in recent years, the multidisciplinary aeroelastic interaction is typically overlooked. Previous work by Timme [1] applied stability theory to a large aircraft wing, specifically the NASA Common Research Model, to reveal a global instability linked to shock buffet. Herein, we expand upon that work by adding the dimension of wing vibration to scrutinise its impact on the flow unsteadiness. We consider fluid-structure interaction solving the unsteady Reynolds-averaged Navier–Stokes equations with an industry-grade computational fluid dynamics solver to model the aerodynamics and a modal structural model of the actual wind-tunnel geometry to describe the flexible wing. Our focus experimental flow condition is a reference free-stream Mach number of 0.85 with a chord Reynolds number of 5 × 106 and a supercritical angle of attack of 3.75◦ . Results show that the initial aerodynamic unsteadiness, when started from a well converged static aeroelastic solution (validated with wind-tunnel data), is nearly independent of the presence of the flexible wing structure as long as the amplitudes are small. Indeed wing vibration follows the dominant shock-buffet excitation. Once transitioned into the non-linear aerodynamic regime (while noting that at the time of writing a longer time history is still required), most of the structural degrees-of-freedom are active close to their respective natural frequencies and also within the shock-buffet frequency range. An aeroelastic global stability analysis presented in our companion paper [2] has revealed that several of these modes become unstable due to the fluid-structure coupling. Overall the impact of the flexible wing results in lower amplitudes in integrated aerodynamic coefficients with a broader frequency content peaking around the first bending frequencies and the shock-buffet frequency range, which is in contrast to the rigid (yet statically deformed) wing where the shock-buffet excitation clearly dominates

    Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water

    Get PDF
    PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine

    Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia

    Get PDF
    In common with other chronic pain conditions, there is an unmet clinical need in the treatment of inherited erythromelalgia (IEM). TheSCN9Agene encoding the sodium channel Nav1.7 expressed in the peripheral nervous system plays a critical role in IEM. A gain-of-function mutation in this sodium channel leads to aberrant sensory neuronal activity and extreme pain, particularly in response to heat. Five patients with IEM were treated with a new potent and selective compound that blocked the Nav1.7 sodium channel resulting in a decrease in heat-induced pain in most of the patients. We derived induced pluripotent stem cell (iPSC) lines from four of five subjects and produced sensory neurons that emulated the clinical phenotype of hyperexcitability and aberrant responses to heat stimuli. When we compared the severity of the clinical phenotype with the hyperexcitability of the iPSC-derived sensory neurons, we saw a trend toward a correlation for individual mutations. The in vitro IEM phenotype was sensitive to Nav1.7 blockers, including the clinical test agent. Given the importance of peripherally expressed sodium channels in many pain conditions, our approach may have broader utility for a wide range of pain and sensory conditions

    The Worksite Health Promotion Capacity Instrument (WHPCI): development, validation and approaches for determining companies' levels of health promotion capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Worksite Health Promotion Capacity Instrument (WHPCI) was developed to assess two key factors for effective worksite health promotion: collective willingness and the systematic implementation of health promotion activities in companies. This study evaluates the diagnostic qualities of the WHPCI based on its subscales Health Promotion Willingness and Health Promotion Management, which can be used to place companies into four different categories based on their level of health promotion capacity.</p> <p>Methods</p> <p>Psychometric evaluation was conducted using exploratory factor and reliability analyses with data taken from a random sample of managers from n = 522 German information and communication technology (ICT) companies. Receiver operating characteristic (ROC) analyses were conducted to determine further diagnostic qualities of the instrument and to establish the cut-off scores used to determine each company's level of health promotion capacity.</p> <p>Results</p> <p>The instrument's subscales, Health Promotion Willingness and Health Promotion Management, are based on one-dimensional constructs, each with very good reliability (Cronbach's alpha = 0.83/0.91). ROC analyses demonstrated satisfactory diagnostic accuracy with an area under the curve (AUC) of 0.76 (SE = 0.021; 95% CI 0.72-0.80) for the Health Promotion Willingness scale and 0.81 (SE = 0.021; 95% CI 0.77-0.86) for the Health Promotion Management scale. A cut-off score with good sensitivity (71%/76%) and specificity (69%/75%) was determined for each scale. Both scales were found to have good predictive power and exhibited good efficiency.</p> <p>Conclusions</p> <p>Our findings indicate preliminary evidence for the validity and reliability of both subscales of the WHPCI. The goodness of each cut-off score suggests that the scales are appropriate for determining companies' levels of health promotion capacity. Support in implementing (systematic) worksite health promotion can then be tailored to each company's needs based on their current capacity level.</p

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses
    corecore