398 research outputs found
Palaeolimnology of Lake Sapanca and identification of historic earthquake signals, Northern Anatolian Fault Zone (Turkey)
Lake Sapanca is located on a strand of the Northern Anatolian Fault Zone (NAFZ, Turkey), where a series of strong earthquakes (Ms >6.0) have occurred over the past hundred years. Identifying prehistoric
earthquakes in and around Lake Sapanca is key to a better understanding of plate movements along the
NAFZ. This study contributes to the development of palaeolimnological tools to identify past earthquakes
in Lake Sapanca. To this end several promising proxies were investigated, specifically lithology, magnetic
susceptibility, grain size (thin-section and laser analysis), geochemistry, pollen concentration, diatom
assemblages, 137Cs and 210Pb. Sedimentological indicators provided evidence for reworked, turbidite-like
or homogeneous facies (event layers) in several short cores (<45 cm). Other indicators of sediment input
and the historical chronicles available for the area suggest that three of these event layers likely originated
from the AD 1957, 1967 and 1999 earthquakes. Recent changes in sediment deposition and nutrient
levels have also been identified, but are probably not related to earthquakes. This study demonstrates
that a combination of indicators can be used to recognize earthquake-related event layers in cores that encompass a longer period of time
Endocrine control of canine mammary neoplasms: serum reproductive hormone levels and tissue expression of steroid hormone, prolactin and growth hormone receptors
BACKGROUND: Neoplasms of the mammary gland are among the most common diseases in female domestic dogs (Canis familiaris). It is assumed that reproductive hormones influence tumorigenesis in this species, although the precise role of the endocrine milieu and reproductive state is subject to continuing discussion. In line with this, a recent systematic review of available data on the development of mammary neoplasms revealed weak evidence for risk reduction after neutering and an effect of age at neutering. Investigation of several hormone receptors has revealed decreased expression of estrogen receptor-alpha (ERα, ESR1), progesterone (P4) receptor (PGR), prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) associated with neoplastic differentiation of mammary tissues. In other studies, increased levels of estrogens, progesterone and prolactin were found in serum and/or tissue homogenates of dogs with malignant neoplasms. However, the association between these entities within one animal population was never previously examined. Therefore, this study investigated the association between circulating serum concentrations of estradiol-17β, progesterone and prolactin, and gene expression of ERα (ESR1), ERβ (ESR2), PGR, PRLR, PRL and GHR, with respect to reproductive state (spayed vs. intact) and cycle stage (anestrus vs. diestrus). Additionally, the expression of E-cadherin (CDH-1) was evaluated as a possible indicator of metastatic potential. RESULTS: For all receptors, the lowest gene expression was found in malignant tumors compared to normal tissues of affected dogs. Steroid levels were not influenced by their corresponding receptor expression in mammary neoplasms, but increased PRL levels were negatively associated with low PRLR gene expression in malignant tumors. The expression of CDH-1 was influenced by tumor malignancy and cycle stage, i.e., the highest gene expression was found in benign mammary tumors in diestrous dogs compared to normal and malignant mammary tissues of anestrous and spayed dogs. CONCLUSIONS: Herein, it has been confirmed that transformation towards malignant neoplasms is associated with significant reduction of gene expression of particular hormone receptors. Only PRLR in malignant tumors seems to be influenced by circulating PRL levels. In dogs, CDH-1 can be used as a prognostic factor; its expression, however, in benign tumors is influenced by cycle stage
L-Mn dielectronic recombination of cerium ions in a room-temperature EBIT
Funding Information: P A and F G acknowledge the FCT through Project Number UID/04559/2020 (LIBPhys), and contract No. UI/BD/151000/2021. This research has been carried out under the High Performance Computing Chair—a R&D infrastructure (based at the University of Évora; PI: M Avillez), endorsed by Hewlett Packard Enterprise (HPE), and involving a consortium of higher education institutions (University of Algarve, University of Évora, New University of Lisbon, and University of Porto), research centres (CIAC, CIDEHUS, CHRC), enterprises (HPE, ANIET, ASSIMAGRA, Cluster Portugal Mineral Resources, DECSIS, FastCompChem, GeoSense, GEOtek, Health Tech, Starkdata), and public/private organizations (Alentejo Tourism-ERT, KIPT Colab). W B -N acknowledges the GET_INvolved Programme at FAIR/GSI (www.fair-center.eu/get_involved) and the JIPhD program through contract POWR.03.05.00-00-Z309/17-00. Publisher Copyright: © 2024 The Author(s). Published by IOP Publishing Ltd.We explore the dielectronic recombination structures at the electron beam ion trap at Jagiellonian University in Cracow, emited by cerium that is produced by the high-current cathode made of iridium and cerium. Small amounts of these elements evaporate from the cathode and form low-intensity admixtures within the electron-ion plasma in the EBIT. Their presence and specific ionic population can be observed by examining the spectral characteristics resulting from the DR process. Results have been compared with flexible atomic code calculations, working in unresolved transition array mode, providing identification of the charge states. Here we show that this mode provides quick calculations of very complex data with enough reliability for experimental comparison. These observations highlight which DR features and corresponding charge states that should be present in spectra obtained in EBITs with similar cathode specifications.publishersversionpublishe
The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP
Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from
Putative Cooperative ATP-DnaA Binding to Double-Stranded DnaA Box and Single-Stranded DnaA-Trio Motif upon Helicobacter pylori Replication Initiation Complex Assembly
oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA–ssDNA oligomer formation—stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP–DnaA boxes. Indeed, in vitro ATP–DnaA unwinds H. pylori oriC more efficiently than ADP–DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly
Photoreduction of CO2 with a Formate Dehydrogenase Driven by Photosystem II Using a Semi-artificial Z-Scheme Architecture.
Solar-driven coupling of water oxidation with CO2 reduction sustains life on our planet and is of high priority in contemporary energy research. Here, we report a photoelectrochemical tandem device that performs photocatalytic reduction of CO2 to formate. We employ a semi-artificial design, which wires a W-dependent formate dehydrogenase (FDH) cathode to a photoanode containing the photosynthetic water oxidation enzyme, Photosystem II, via a synthetic dye with complementary light absorption. From a biological perspective, the system achieves a metabolically inaccessible pathway of light-driven CO2 fixation to formate. From a synthetic point of view, it represents a proof-of-principle system utilizing precious-metal-free catalysts for selective CO2-to-formate conversion using water as an electron donor. This hybrid platform demonstrates the translatability and versatility of coupling abiotic and biotic components to create challenging models for solar fuel and chemical synthesis.ERC Consolidator Grant, EPSRC, Christian Doppler Research Association (Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development), the OMV group, Deutsche Forschungsgemeinschaft, European Union's Horizon 2020 MSCA, Fundação para a Ciência e Tecnologia (Portugal), COMPETE2020/POCI and European Union’s Horizon 202
The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP
Background\ud
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud
\ud
Methods and results\ud
Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud
\ud
Conclusions\ud
This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens
Pliocene to Pleistocene climate and environmental history of Lake El\u27gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data
The 3.6 Ma sediment record of Lake El\u27gygytgyn/NE Russia, Far East Russian Arctic, represents the longest continuous climate archive of the terrestrial Arctic. Its elemental composition as determined by X-ray fluorescence scanning exhibits significant changes since the mid-Pliocene caused by climate-driven variations in primary production, postdepositional diagenetic processes, and lake circulation as well as weathering processes in its catchment. During the mid- to late Pliocene, warmer and wetter climatic conditions are reflected by elevated Si / Ti ratios, indicating enhanced diatom production in the lake. Prior to 3.3 Ma, this signal is overprinted by intensified detrital input from the catchment, visible in maxima of clastic-related proxies, such as K. In addition, calcite formation in the early lake history points to enhanced Ca flux into the lake caused by intensified weathering in the catchment. A lack of calcite deposition after ca. 3.3 Ma is linked to the development of permafrost in the region triggered by cooling in the mid-Pliocene. After ca. 3.0 Ma the elemental data suggest a gradual transition to Pleistocene-style glacial-interglacial cyclicity. In the early Pleistocene, the cyclicity was first dominated by variations on the 41 kyr obliquity band but experienced a change to a 100 kyr eccentricity dominance during the middle Pleistocene transition (MPT) at ca. 1.2-0.6 Ma. This clearly demonstrates the sensitivity of the Lake El\u27gygytgyn record to orbital forcing. A successive decrease of the baseline levels of the redox-sensitive Mn / Fe ratio and magnetic susceptibility between 2.3 and 1.8 Ma reflects an overall change in the bottom-water oxygenation due to an intensified occurrence of pervasive glacial episodes in the early Pleistocene. The coincidence with major changes in the North Pacific and Bering Sea paleoceanography at ca. 1.8 Ma implies that the change in lake hydrology was caused by a regional cooling in the North Pacific and the western Beringian landmass and/or changes in the continentality. Further increases in total organic carbon and total nitrogen content after ca. 1.6 Ma are attributed to reduced organic matter decay in the sediment during prolonged anoxic periods. This points to more extensive periods of perennial ice coverage, and thus, to a progressive shifts towards more intense peak glacial periods. In the course of the Pleistocene glacial-interglacial sequence eight so-called super-interglacials occur. Their exceptionally warm conditions are reflected by extreme Si / Ti peaks accompanied by lows in Ti, K, and Fe, thus indicating extraordinary high lake productivity
Engineering of NADPH Supply Boosts Photosynthesis-Driven Biotransformations
was reached, allowing the complete conversion of a 60 mM substrate solution within 4 h
Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer.
Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-A resolution cryo-EM structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH. A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process. Copyright © 2018, American Association for the Advancement of Science
- …
