851 research outputs found
Molecular gas freeze-out in the pre-stellar core L1689B
C17O (J=2-1) observations have been carried out towards the pre-stellar core
L1689B. By comparing the relative strengths of the hyperfine components of this
line, the emission is shown to be optically thin. This allows accurate CO
column densities to be determined and, for reference, this calculation is
described in detail. The hydrogen column densities that these measurements
imply are substantially smaller than those calculated from SCUBA dust emission
data. Furthermore, the C17O column densities are approximately constant across
L1689B whereas the SCUBA column densities are peaked towards the centre. The
most likely explanation is that CO is depleted from the central regions of
L1689B. Simple models of pre-stellar cores with an inner depleted region are
compared with the results. This enables the magnitude of the CO depletion to be
quantified and also allows the spatial extent of the freeze-out to be firmly
established. We estimate that within about 5000 AU of the centre of L1689B,
over 90% of the CO has frozen onto grains. This level of depletion can only be
achieved after a duration that is at least comparable to the free-fall
timescale.Comment: MNRAS letters. 5 pages, 5 figure
Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions.
Bone is established as the preferred site of breast cancer metastasis. However, the precise mechanisms responsible for this preference remain unidentified. In order to improve outcome for patients with advanced breast cancer and skeletal involvement, we need to better understand how this process is initiated and regulated. As bone metastasis cannot be easily studied in patients, researchers have to date mainly relied on in vivo xenograft models. A major limitation of these is that they do not contain a human bone microenvironment, increasingly considered to be an important component of metastases. In order to address this shortcoming, we have developed a novel humanised bone model, where 1 × 10(5) luciferase-expressing MDA-MB-231 or T47D human breast tumour cells are seeded on viable human subchaodral bone discs in vitro. These discs contain functional osteoclasts 2-weeks after in vitro culture and positive staining for calcine 1-week after culture demonstrating active bone resorption/formation. In vitro inoculation of MDA-MB-231 or T47D cells colonised human bone cores and remained viable for <4 weeks, however, use of matrigel to enhance adhesion or a moving platform to increase diffusion of nutrients provided no additional advantage. Following colonisation by the tumour cells, bone discs pre-seeded with MDA-MB-231 cells were implanted subcutaneously into NOD SCID mice, and tumour growth monitored using in vivo imaging for up to 6 weeks. Tumour growth progressed in human bone discs in 80 % of the animals mimicking the later stages of human bone metastasis. Immunohistochemical and PCR analysis revealed that growing MDA-MB-231 cells in human bone resulted in these cells acquiring a molecular phenotype previously associated with breast cancer bone metastases. MDA-MB-231 cells grown in human bone discs showed increased expression of IL-1B, HRAS and MMP9 and decreased expression of S100A4, whereas, DKK2 and FN1 were unaltered compared with the same cells grown in mammary fat pads of mice not implanted with human bone discs
Computer Simulation of Energy Use Greenhouse Gas Emissions and Costs for Alternative Methods of Processing Fluid Milk
Molecular line contamination in the SCUBA-2 450 {\mu}m and 850 {\mu}m continuum data
Observations of the dust emission using millimetre/submillimetre bolometer
arrays can be contaminated by molecular line flux, such as flux from 12CO. As
the brightest molecular line in the submillimetre, it is important to quantify
the contribution of CO flux to the dust continuum bands. Conversion factors
were used to convert molecular line integrated intensities to flux detected by
bolometer arrays in mJy per beam. These factors were calculated for 12CO line
integrated intensities to the SCUBA-2 850 {\mu}m and 450 {\mu}m bands. The
conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the
Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud
complex to quantify the respective 12CO flux contribution to the 850 {\mu}m
dust continuum emission. Sources with high molecular line contamination were
analysed in further detail for molecular outflows and heating by nearby stars
to determine the cause of the 12CO contribution. The majority of sources had a
12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular
outflows, the 12CO can dominate the source dust continuum (up to 79 per cent
contamination) with 12CO fluxes reaching \sim 68 mJy per beam.Comment: Accepted 2012 April 19 for publication in MNRAS. 21 pages, 13
figures, 3 table
The relationship between the prestellar core mass function and the stellar initial mass function
Stars form from dense molecular cores, and the mass function of these cores
(the CMF) is often found to be similar to the form of the stellar initial mass
function (IMF). This suggests that the form of the IMF is the result of the
form of the CMF. However, most stars are thought to form in binary and multiple
systems, therefore the relationship between the IMF and the CMF cannot be
trivial. We test two star formation scenarios - one in which all stars form as
binary or triple systems, and one in which low-mass stars form in a
predominantly single mode. We show that from a log-normal CMF, similar to those
observed, and expected on theoretical grounds, the model in which all stars
form as multiples gives a better fit to the IMF.Comment: 7 pages, 3 figures, A&A in pres
Profiling filaments: comparing near-infrared extinction and submillimetre data in TMC-1
Interstellar filaments are an important part of star formation. To understand
the structure of filaments, cross-section profiles are often fitted with
Plummer profiles. This profiling is often done with submm studies, such as
Herschel. It would be convenient if filament properties could also be studied
using groundbased NIR data. We compare the filament profiles obtained by NIR
extinction and submm observations to find out if reliable profiles can be
derived using NIR data. We use J-, H-, and K-band data of a filament north of
TMC-1 to derive an extinction map from colour excesses of background stars. We
compare the Plummer profiles obtained from extinction maps with Herschel dust
emission maps. We present 2 methods to estimate profiles from NIR: Plummer
profile fits to median Av of stars or directly to the Av of individual stars.
We compare the methods by simulations. In simulations extinction maps and the
new methods give correct results to within ~10-20 for modest densities. Direct
fit to data on individual stars gives more accurate results than extinction
map, and can work in higher density. In profile fits to real observations,
values of Plummer parameters are generally similar to within a factor of ~2.
Although parameter values can vary significantly, estimates of filament mass
usually remain accurate to within some tens of per cent. Our results for TMC-1
are in agreement with earlier results. High resolution NIR data give more
details, but 2MASS data can be used to estimate profiles. NIR extinction can be
used as an alternative to submm observations to profile filaments. Direct fits
of stars can also be a valuable tool. Plummer profile parameters are not always
well constrained, and caution should be taken when making fits. In the
evaluation of Plummer parameters, one can use the independence of dust emission
and NIR data and the difference in the shapes of the confidence regions.Comment: accepted to Astronomy & Astrophysics; abstract has been shortened for
astrop
Measurements of cosmic-ray energy spectra with the 2nd CREAM flight
During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And
Mass) balloon experiment collected data for 28 days, measuring the charge and
the energy of cosmic rays (CR) with a redundant system of particle
identification and an imaging thin ionization calorimeter. Preliminary direct
measurements of the absolute intensities of individual CR nuclei are reported
in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very
High Energy Cosmic Ray Interactions (ISVHECRI 2008
A VLA search for young protostars embedded in dense cores
Four dense cores, L1582A, L1689A, B133 and B68, classified as prestellar in
terms of the absence of detectable NIR emission, are observed at radio
wavelengths to investigate whether they nurture very young protostars. No
definite young protostars were discovered in any of the four cores observed. A
few radio sources were discovered close to the observed cores, but these are
most likely extragalactic sources or YSOs unrelated to the cores observed. In
L1582A we discovered a weak radio source near the centre of the core with radio
characteristics and offset from the peak of the submillimeter emission similar
to that of the newly discovered protostar in the core L1014, indicating a
possible protostellar nature for this source. This needs to be confirmed with
near- and/or mid-infrared observations (e.g. with Spitzer). Hence based on the
current observations we are unable to confirm unequivocally that L1582A is
starless. In L1689A a possible 4.5-sigma radio source was discovered at the
centre of the core, but needs to be confirmed with future observations. In B133
a weak radio source, possibly a protostar, was discovered at the edge of the
core on a local peak of the core submm emission, but no source was detected at
the centre of the core. Thus, B133 is probably starless, but may have a
protostar at its edge. In B68 no radio sources were discovered inside or at the
edge of the core, and thus B68 is indeed starless. Four more radio sources with
spectral indices characteristic of young protostars were discovered outside the
cores but within the extended clouds in which these cores reside. Conclusions:
We conclude that the number of cores misclassified as prestellar is probably
very small and does not significantly alter the estimated lifetime of the
prestellar phase.Comment: Accepted by A&
Energy spectra of cosmic-ray nuclei at high energies
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment Cosmic Ray Energetics
And Mass (CREAM). The instrument included different particle detectors to
provide redundant charge identification and measure the energy of CRs up to
several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg,
Si, and Fe are presented up to eV. The spectral shape looks
nearly the same for these primary elements and it can be fitted to an power law in energy. Moreover, a new measurement of the absolute
intensity of nitrogen in the 100-800 GeV/ energy range with smaller errors
than previous observations, clearly indicates a hardening of the spectrum at
high energy. The relative abundance of N/O at the top of the atmosphere is
measured to be (stat.)(sys.) at 800
GeV/, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical
Journa
- …
