15,469 research outputs found
Beat Em or Join Em: Export Subsidies versus International Research Joint Ventures in Oligopolistic Markets
This paper compares adversarial with cooperative industrial and trade policies in a dynamic oligopoly game in which a home and foreign firm compete in R&D and output and, because of spillovers, each firm benefits from the other's R&D. When the government can commit to an export subsidy, such a policy raises welfare relative to cooperation, except when R&D is highly effective and spillovers are near-complete. Without commitment, however, subsidisation may yield welfare levels much lower than cooperation and lower even than free trade, though qualifications to the dangers from no commitment are noted.
Virtual Meson Cloud of the Nucleon and Intrinsic Strangeness and Charm
We have applied the Meson Cloud Model (MCM) to calculate the charm and
strange antiquark distribution in the nucleon. The resulting distribution, in
the case of charm, is very similar to the intrinsic charm momentum distribution
in the nucleon. This seems to corroborate the hypothesis that the intrinsic
charm is in the cloud and, at the same time, explains why other calculations
with the MCM involving strange quark distributions fail in reproducing the low
x region data. From the intrinsic strange distribution in the nucleon we have
extracted the strangeness radius of the nucleon, which is in agreement with
other meson cloud calculations.Comment: 9 pages RevTex, 4 figure
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
Expanding direction of the period doubling operator
We prove that the period doubling operator has an expanding direction at the
fixed point. We use the induced operator, a ``Perron-Frobenius type operator'',
to study the linearization of the period doubling operator at its fixed point.
We then use a sequence of linear operators with finite ranks to study this
induced operator. The proof is constructive. One can calculate the expanding
direction and the rate of expansion of the period doubling operator at the
fixed point
Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity
Interaction of supernova (SN) ejecta with the optically thick circumstellar
medium (CSM) of a progenitor star can result in a bright, long-lived shock
breakout event. Candidates for such SNe include Type IIn and superluminous SNe.
If some of these SNe are powered by interaction, then there should be a
relation between their peak luminosity, bolometric light-curve rise time, and
shock-breakout velocity. Given that the shock velocity during shock breakout is
not measured, we expect a correlation, with a significant spread, between the
rise time and the peak luminosity of these SNe. Here, we present a sample of 15
SNe IIn for which we have good constraints on their rise time and peak
luminosity from observations obtained using the Palomar Transient Factory. We
report on a possible correlation between the R-band rise time and peak
luminosity of these SNe, with a false-alarm probability of 3%. Assuming that
these SNe are powered by interaction, combining these observables and theory
allows us to deduce lower limits on the shock-breakout velocity. The lower
limits on the shock velocity we find are consistent with what is expected for
SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light
curves of SNe IIn are caused by shock breakout in a dense CSM. We note that
such a correlation can arise from other physical mechanisms. Performing such a
test on other classes of SNe (e.g., superluminous SNe) can be used to rule out
the interaction model for a class of events.Comment: Accepted to ApJ, 6 page
Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234
We present the analysis of a total of 177h of high-quality optical
time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC
20058-5234. The bulk of the observations (135h) were obtained during a WET
campaign (XCOV15) in July 1997 that featured coordinated observing from 4
southern observatory sites over an 8-day period. The remaining data (42h) were
obtained in June 2004 at Mt John Observatory in NZ over a one-week observing
period. This work significantly extends the discovery observations of this
low-amplitude (few percent) pulsator by increasing the number of detected
frequencies from 8 to 18, and employs a simulation procedure to confirm the
reality of these frequencies to a high level of significance (1 in 1000). The
nature of the observed pulsation spectrum precludes identification of unique
pulsation mode properties using any clearly discernable trends. However, we
have used a global modelling procedure employing genetic algorithm techniques
to identify the n, l values of 8 pulsation modes, and thereby obtain
asteroseismic measurements of several model parameters, including the stellar
mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those
derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We
also present persuasive evidence from apparent rotational mode splitting for
two of the modes that indicates this compact object is a relatively rapid
rotator with a period of 2h. In direct analogy with the corresponding
properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude
pulsation behaviour of EC 20058 is entirely consistent with its inferred
effective temperature, which indicates it is close to the blue edge of the DBV
instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte
An outburst from a massive star 40 days before a supernova explosion
Various lines of evidence suggest that very massive stars experience extreme
mass-loss episodes shortly before they explode as a supernova. Interestingly,
several models predict such pre-explosion outbursts. Establishing a causal
connection between these mass-loss episodes and the final supernova explosion
will provide a novel way to study pre-supernova massive-star evolution. Here we
report on observations of a remarkable mass-loss event detected 40 days prior
to the explosion of the Type IIn supernova SN 2010mc (PTF 10tel). Our
photometric and spectroscopic data suggest that this event is a result of an
energetic outburst, radiating at least 6x10^47 erg of energy, and releasing
about 0.01 Solar mass at typical velocities of 2000 km/s. We show that the
temporal proximity of the mass-loss outburst and the supernova explosion
implies a causal connection between them. Moreover, we find that the outburst
luminosity and velocity are consistent with the predictions of the wave-driven
pulsation model and disfavor alternative suggestions.Comment: Nature 494, 65, including supplementary informatio
Field of a Radiation Distributuion
General relativistic spherically symmetric matter field with a vanishing
stress energy scalar is analyzed. Procedure for generating exact solutions of
the field equations for such matter distributions is given. It is further
pointed out that all such type I spherically symmetric fields with distinct
eignvalues in the radial two space can be treated as a mixture of isotropic and
directed radiations. Various classes of exact solutions are given. Junction
conditions for such a matter field to the possible exterior solutions are also
discussed.Comment: Latex file, 13 pages, no figures. Accepted for publication in Phys.
Rev.
Automorphism groups of polycyclic-by-finite groups and arithmetic groups
We show that the outer automorphism group of a polycyclic-by-finite group is
an arithmetic group. This result follows from a detailed structural analysis of
the automorphism groups of such groups. We use an extended version of the
theory of the algebraic hull functor initiated by Mostow. We thus make
applicable refined methods from the theory of algebraic and arithmetic groups.
We also construct examples of polycyclic-by-finite groups which have an
automorphism group which does not contain an arithmetic group of finite index.
Finally we discuss applications of our results to the groups of homotopy
self-equivalences of K(\Gamma, 1)-spaces and obtain an extension of
arithmeticity results of Sullivan in rational homotopy theory
Light curves of hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
We investigate the light-curve properties of a sample of 26 spectroscopically
confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar
Transient Factory (PTF) survey. These events are brighter than SNe Ib/c and SNe
Ic-BL, on average, by about 4 and 2~mag, respectively. The peak absolute
magnitudes of SLSNe-I in rest-frame band span ~mag, and these peaks are not powered by radioactive Ni,
unless strong asymmetries are at play. The rise timescales are longer for SLSNe
than for normal SNe Ib/c, by roughly 10 days, for events with similar decay
times. Thus, SLSNe-I can be considered as a separate population based on
photometric properties. After peak, SLSNe-I decay with a wide range of slopes,
with no obvious gap between rapidly declining and slowly declining events. The
latter events show more irregularities (bumps) in the light curves at all
times. At late times, the SLSN-I light curves slow down and cluster around the
Co radioactive decay rate. Powering the late-time light curves with
radioactive decay would require between 1 and 10 of Ni masses.
Alternatively, a simple magnetar model can reasonably fit the majority of
SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay
of Co, up to days from explosion. The resulting spin values do
not correlate with the host-galaxy metallicities. Finally, the analysis of our
sample cannot strengthen the case for using SLSNe-I for cosmology.Comment: 120 pages, 48 figures, 78 tables. ApJ in pres
- …
