11,247 research outputs found

    The Kelvin Formula for Thermopower

    Get PDF
    Thermoelectrics are important in physics, engineering, and material science due to their useful applications and inherent theoretical difficulty, especially in strongly correlated materials. Here we reexamine the framework for calculating the thermopower, inspired by ideas of Lord Kelvin from 1854. We find an approximate but concise expression, which we term as the Kelvin formula for the the Seebeck coefficient. According to this formula, the Seebeck coefficient is given as the particle number NN derivative of the entropy Σ\Sigma, at constant volume VV and temperature TT, SKelvin=1qe{ΣN}V,TS_{\text{Kelvin}}=\frac{1}{q_e}\{\frac{\partial {\Sigma}}{\partial N} \}_{V,T}. This formula is shown to be competitive compared to other approximations in various contexts including strongly correlated systems. We finally connect to a recent thermopower calculation for non-Abelian fractional quantum Hall states, where we point out that the Kelvin formula is exact.Comment: 6 pages, 2 figure

    Thermopower of Two-Dimensional Electrons at ν\nu = 3/2 and 5/2

    Full text link
    The longitudinal thermopower of ultra-high mobility two-dimensional electrons has been measured at both zero magnetic field and at high fields in the compressible metallic state at filling factor ν=3/2\nu = 3/2 and the incompressible fractional quantized Hall state at ν=5/2\nu = 5/2. At zero field our results demonstrate that the thermopower is dominated by electron diffusion for temperatures below about T=150T = 150 mK. A diffusion dominated thermopower is also observed at ν=3/2\nu = 3/2 and allows us to extract an estimate of the composite fermion effective mass. At ν=5/2\nu = 5/2 both the temperature and magnetic field dependence of the observed thermopower clearly signal the presence of the energy gap of this fractional quantized Hall state. We find that the thermopower in the vicinity of ν=5/2\nu = 5/2 exceeds that recently predicted under the assumption that the entropy of the 2D system is dominated by non-abelian quasiparticle exchange statistics.Comment: 10 pages, 10 figures

    Thermopower as a Possible Probe of Non-Abelian Quasiparticle Statistics in Fractional Quantum Hall Liquids

    Full text link
    We show in this paper that thermopower is enhanced in non-Abelian quantum Hall liquids under appropriate conditions. This is because thermopower measures entropy per electron in the clean limit, while the degeneracy and entropy associated with non-Abelian quasiparticles enhance entropy when they are present. Thus thermopower can potentially probe non-Abelian nature of the quasiparticles, and measure their quantum dimension.Comment: 5 pages. Minor revisions in response to referee comments. Published versio

    Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes

    Full text link
    We present a general hydrodynamic theory of transport in the vicinity of superfluid-insulator transitions in two spatial dimensions described by "Lorentz"-invariant quantum critical points. We allow for a weak impurity scattering rate, a magnetic field B, and a deviation in the density, \rho, from that of the insulator. We show that the frequency-dependent thermal and electric linear response functions, including the Nernst coefficient, are fully determined by a single transport coefficient (a universal electrical conductivity), the impurity scattering rate, and a few thermodynamic state variables. With reasonable estimates for the parameters, our results predict a magnetic field and temperature dependence of the Nernst signal which resembles measurements in the cuprates, including the overall magnitude. Our theory predicts a "hydrodynamic cyclotron mode" which could be observable in ultrapure samples. We also present exact results for the zero frequency transport co-efficients of a supersymmetric conformal field theory (CFT), which is solvable by the AdS/CFT correspondence. This correspondence maps the \rho and B perturbations of the 2+1 dimensional CFT to electric and magnetic charges of a black hole in the 3+1 dimensional anti-de Sitter space. These exact results are found to be in full agreement with the general predictions of our hydrodynamic analysis in the appropriate limiting regime. The mapping of the hydrodynamic and AdS/CFT results under particle-vortex duality is also described.Comment: 44 pages, 4 figures; (v3) Added new subsection highlighting negative Hall resistance at hole densities smaller than 1/

    Thermohydrodynamics in Quantum Hall Systems

    Full text link
    A theory of thermohydrodynamics in two-dimensional electron systems in quantizing magnetic fields is developed including a nonlinear transport regime. Spatio-temporal variations of the electron temperature and the chemical potential in the local equilibrium are described by the equations of conservation with the number and thermal-energy flux densities. A model of these flux densities due to hopping and drift processes is introduced for a random potential varying slowly compared to both the magnetic length and the phase coherence length. The flux measured in the standard transport experiment is derived and is used to define a transport component of the flux density. The equations of conservation can be written in terms of the transport component only. As an illustration, the theory is applied to the Ettingshausen effect, in which a one-dimensional spatial variation of the electron temperature is produced perpendicular to the current.Comment: 10 pages, 1 figur

    Thermoelectric Response of an Interacting Two-Dimensional Electron Gas in Quantizing Magnetic Field

    Full text link
    We present a discussion of the linear thermoelectric response of an interacting electron gas in a quantizing magnetic field. Boundary currents can carry a significant fraction of the net current passing through the system. We derive general expressions for the bulk and boundary components of the number and energy currents. We show that the local current density may be described in terms of ``transport'' and ``internal magnetization'' contributions. The latter carry no net current and are not observable in standard transport experiments. We show that although Onsager relations cannot be applied to the local current, they are valid for the transport currents and hence for the currents observed in standard transport experiments. We relate three of the four thermoelectric response coefficients of a disorder-free interacting two-dimensional electron gas to equilibrium thermodynamic quantities. In particular, we show that the diffusion thermopower is proportional to the entropy per particle, and we compare this result with recent experimental observations.Comment: 18 pages, 2 postscript figures included. Revtex with epsf.tex and multicol.sty. In the revised version, the comparison with experimental observations at ν=1/2,3/2\nu=1/2, 3/2 is extended to include the possibility of corrections due to weak impurity scattering. The conclusions that we reach regarding the applicability of the composite fermion model at these filling fractions are not affecte

    An electromagnetic shashlik calorimeter with longitudinal segmentation

    Get PDF
    A novel technique for longitudinal segmentation of shashlik calorimeters has been tested in the CERN West Area beam facility. A 25 tower very fine samplings e.m. calorimeter has been built with vacuum photodiodes inserted in the first 8 radiation lengths to sample the initial development of the shower. Results concerning energy resolution, impact point reconstruction and electron/pion separation are reported.Comment: 13 pages, 12 figure

    Nernst-Ettingshausen effect in two-component electronic liquids

    Full text link
    A simple model describing the Nernst-Ettingshausen effect (NEE) in two-component electronic liquids is formulated. The examples considered include graphite, where the normal and Dirac fermions coexist, superconductor in fluctuating regime, with coexisting Cooper pairs and normal electrons, and the inter-stellar plasma of electrons and protons. We give a general expression for the Nernst constant and show that the origin of a giant NEE is in the strong dependence of the chemical potential on temperature in all cases
    corecore