11,247 research outputs found
The Kelvin Formula for Thermopower
Thermoelectrics are important in physics, engineering, and material science
due to their useful applications and inherent theoretical difficulty,
especially in strongly correlated materials. Here we reexamine the framework
for calculating the thermopower, inspired by ideas of Lord Kelvin from 1854. We
find an approximate but concise expression, which we term as the Kelvin formula
for the the Seebeck coefficient. According to this formula, the Seebeck
coefficient is given as the particle number derivative of the entropy
, at constant volume and temperature ,
. This formula is shown to be competitive compared to other
approximations in various contexts including strongly correlated systems. We
finally connect to a recent thermopower calculation for non-Abelian fractional
quantum Hall states, where we point out that the Kelvin formula is exact.Comment: 6 pages, 2 figure
Thermopower of Two-Dimensional Electrons at = 3/2 and 5/2
The longitudinal thermopower of ultra-high mobility two-dimensional electrons
has been measured at both zero magnetic field and at high fields in the
compressible metallic state at filling factor and the
incompressible fractional quantized Hall state at . At zero field
our results demonstrate that the thermopower is dominated by electron diffusion
for temperatures below about mK. A diffusion dominated thermopower is
also observed at and allows us to extract an estimate of the
composite fermion effective mass. At both the temperature and
magnetic field dependence of the observed thermopower clearly signal the
presence of the energy gap of this fractional quantized Hall state. We find
that the thermopower in the vicinity of exceeds that recently
predicted under the assumption that the entropy of the 2D system is dominated
by non-abelian quasiparticle exchange statistics.Comment: 10 pages, 10 figures
Thermopower as a Possible Probe of Non-Abelian Quasiparticle Statistics in Fractional Quantum Hall Liquids
We show in this paper that thermopower is enhanced in non-Abelian quantum
Hall liquids under appropriate conditions. This is because thermopower measures
entropy per electron in the clean limit, while the degeneracy and entropy
associated with non-Abelian quasiparticles enhance entropy when they are
present. Thus thermopower can potentially probe non-Abelian nature of the
quasiparticles, and measure their quantum dimension.Comment: 5 pages. Minor revisions in response to referee comments. Published
versio
Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes
We present a general hydrodynamic theory of transport in the vicinity of
superfluid-insulator transitions in two spatial dimensions described by
"Lorentz"-invariant quantum critical points. We allow for a weak impurity
scattering rate, a magnetic field B, and a deviation in the density, \rho, from
that of the insulator. We show that the frequency-dependent thermal and
electric linear response functions, including the Nernst coefficient, are fully
determined by a single transport coefficient (a universal electrical
conductivity), the impurity scattering rate, and a few thermodynamic state
variables. With reasonable estimates for the parameters, our results predict a
magnetic field and temperature dependence of the Nernst signal which resembles
measurements in the cuprates, including the overall magnitude. Our theory
predicts a "hydrodynamic cyclotron mode" which could be observable in ultrapure
samples. We also present exact results for the zero frequency transport
co-efficients of a supersymmetric conformal field theory (CFT), which is
solvable by the AdS/CFT correspondence. This correspondence maps the \rho and B
perturbations of the 2+1 dimensional CFT to electric and magnetic charges of a
black hole in the 3+1 dimensional anti-de Sitter space. These exact results are
found to be in full agreement with the general predictions of our hydrodynamic
analysis in the appropriate limiting regime. The mapping of the hydrodynamic
and AdS/CFT results under particle-vortex duality is also described.Comment: 44 pages, 4 figures; (v3) Added new subsection highlighting negative
Hall resistance at hole densities smaller than 1/
Thermohydrodynamics in Quantum Hall Systems
A theory of thermohydrodynamics in two-dimensional electron systems in
quantizing magnetic fields is developed including a nonlinear transport regime.
Spatio-temporal variations of the electron temperature and the chemical
potential in the local equilibrium are described by the equations of
conservation with the number and thermal-energy flux densities. A model of
these flux densities due to hopping and drift processes is introduced for a
random potential varying slowly compared to both the magnetic length and the
phase coherence length. The flux measured in the standard transport experiment
is derived and is used to define a transport component of the flux density. The
equations of conservation can be written in terms of the transport component
only. As an illustration, the theory is applied to the Ettingshausen effect, in
which a one-dimensional spatial variation of the electron temperature is
produced perpendicular to the current.Comment: 10 pages, 1 figur
Thermoelectric Response of an Interacting Two-Dimensional Electron Gas in Quantizing Magnetic Field
We present a discussion of the linear thermoelectric response of an
interacting electron gas in a quantizing magnetic field. Boundary currents can
carry a significant fraction of the net current passing through the system. We
derive general expressions for the bulk and boundary components of the number
and energy currents. We show that the local current density may be described in
terms of ``transport'' and ``internal magnetization'' contributions. The latter
carry no net current and are not observable in standard transport experiments.
We show that although Onsager relations cannot be applied to the local current,
they are valid for the transport currents and hence for the currents observed
in standard transport experiments. We relate three of the four thermoelectric
response coefficients of a disorder-free interacting two-dimensional electron
gas to equilibrium thermodynamic quantities. In particular, we show that the
diffusion thermopower is proportional to the entropy per particle, and we
compare this result with recent experimental observations.Comment: 18 pages, 2 postscript figures included. Revtex with epsf.tex and
multicol.sty. In the revised version, the comparison with experimental
observations at is extended to include the possibility of
corrections due to weak impurity scattering. The conclusions that we reach
regarding the applicability of the composite fermion model at these filling
fractions are not affecte
An electromagnetic shashlik calorimeter with longitudinal segmentation
A novel technique for longitudinal segmentation of shashlik calorimeters has
been tested in the CERN West Area beam facility. A 25 tower very fine samplings
e.m. calorimeter has been built with vacuum photodiodes inserted in the first 8
radiation lengths to sample the initial development of the shower. Results
concerning energy resolution, impact point reconstruction and electron/pion
separation are reported.Comment: 13 pages, 12 figure
Nernst-Ettingshausen effect in two-component electronic liquids
A simple model describing the Nernst-Ettingshausen effect (NEE) in
two-component electronic liquids is formulated. The examples considered include
graphite, where the normal and Dirac fermions coexist, superconductor in
fluctuating regime, with coexisting Cooper pairs and normal electrons, and the
inter-stellar plasma of electrons and protons. We give a general expression for
the Nernst constant and show that the origin of a giant NEE is in the strong
dependence of the chemical potential on temperature in all cases
- …
