131 research outputs found
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating
Low-mass M stars are plentiful in the Universe and often host small, rocky
planets detectable with the current instrumentation. Recently, seven small
planets have been discovered orbiting the ultracool dwarf
TRAPPIST-1\cite{Gillon16,Gillon17}. We examine the role of electromagnetic
induction heating of these planets, caused by the star's rotation and the
planet's orbital motion. If the stellar rotation and magnetic dipole axes are
inclined with respect to each other, induction heating can melt the upper
mantle and enormously increase volcanic activity, sometimes producing a magma
ocean below the planetary surface. We show that induction heating leads the
three innermost planets, one of which is in the habitable zone, to either
evolve towards a molten mantle planet, or to experience increased outgassing
and volcanic activity, while the four outermost planets remain mostly
unaffected.Comment: Published in Nature Astronomy;
https://www.nature.com/articles/s41550-017-0284-
Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets
Planetary embryos form protoplanets via mutual collisions, which can lead to
the development of magma oceans. During their solidification, large amounts of
the mantles' volatile contents may be outgassed. The resulting HO/CO
dominated steam atmospheres may be lost efficiently via hydrodynamic escape due
to the low gravity and the high stellar EUV luminosities. Protoplanets forming
later from such degassed building blocks could therefore be drier than
previously expected. We model the outgassing and subsequent hydrodynamic escape
of steam atmospheres from such embryos. The efficient outflow of H drags along
heavier species (O, CO, noble gases). The full range of possible EUV
evolution tracks of a solar-mass star is taken into account to investigate the
escape from Mars-sized embryos at different orbital distances. The envelopes
are typically lost within a few to a few tens of Myr. Furthermore, we study the
influence on protoplanetary evolution, exemplified by Venus. We investigate
different early evolution scenarios and constrain realistic cases by comparing
modeled noble gas isotope ratios with observations. Starting from solar values,
consistent isotope ratios (Ne, Ar) can be found for different solar EUV
histories, as well as assumptions about the initial atmosphere (either pure
steam or a mixture with accreted H). Our results generally favor an early
accretion scenario with a small amount of accreted H and a low-activity Sun,
because in other cases too much CO is lost during evolution, which is
inconsistent with Venus' present atmosphere. Important issues are likely the
time at which the initial steam atmosphere is outgassed and/or the amount of
CO which may still be delivered at later evolutionary stages. A late
accretion scenario can only reproduce present isotope ratios for a highly
active young Sun, but then very massive steam atmospheres would be required.Comment: 61 pages, 7 figures, 3 tables, accepted to Icaru
A grid of upper atmosphere models for 1--40 MEARTH planets: application to CoRoT-7 b and HD219134 b,c
There is growing observational and theoretical evidence suggesting that
atmospheric escape is a key driver of planetary evolution. Commonly, planetary
evolution models employ simple analytic formulae (e.g., energy limited escape)
that are often inaccurate, and more detailed physical models of atmospheric
loss usually only give snapshots of an atmosphere's structure and are difficult
to use for evolutionary studies. To overcome this problem, we upgrade and
employ an already existing upper atmosphere hydrodynamic code to produce a
large grid of about 7000 models covering planets with masses 1 - 39 Earth mass
with hydrogen-dominated atmospheres and orbiting late-type stars. The modeled
planets have equilibrium temperatures ranging between 300 and 2000 K. For each
considered stellar mass, we account for three different values of the
high-energy stellar flux (i.e., low, moderate, and high activity). For each
computed model, we derive the atmospheric temperature, number density, bulk
velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the
considered species as a function of distance from the planetary center. From
these quantities, we estimate the positions of the maximum dissociation and
ionisation, the mass-loss rate, and the effective radius of the XUV absorption.
We show that our results are in good agreement with previously published
studies employing similar codes. We further present an interpolation routine
capable to extract the modelling output parameters for any planet lying within
the grid boundaries. We use the grid to identify the connection between the
system parameters and the resulting atmospheric properties. We finally apply
the grid and the interpolation routine to estimate atmospheric evolutionary
tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c...Comment: 21 pages, 4 Tables, 15 Figure
- …
