132 research outputs found

    Three-dimensional cross-linked F-actin networks:Relation between network architecture and mechanical behavior

    Get PDF
    Numerical simulations are reported for the response of three-dimensional cross-linked F-actin networks when subjected to large deformations. In addition to the physiological parameters such as actin and cross-linker concentration, the model explicitly accounts for filament properties and network architecture. Complementary to two-dimensional studies, we find that the strain-stiffening characteristics depend on network architecture through the local topology around cross-links

    The origin of stiffening in cross-linked semiflexible networks

    Get PDF
    Strain stiffening of protein networks is explored by means of a finite strain analysis of a two-dimensional network model of cross-linked semiflexible filaments. The results show that stiffening is caused by non-affine network rearrangements that govern a transition from a bending dominated response at small strains to a stretching dominated response at large strains. Thermally-induced filament undulations only have a minor effect; they merely postpone the transition.Comment: 5 pages, 5 figure

    Fluid-structure interaction of three-dimensional magnetic artificial cilia

    Get PDF
    A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The coupling between both models is performed by imposing no-slip boundary conditions on the surface of the cilia. The performance of the model is verified using various reference problems available in the literature. The model is used to simulate the fluid flow due to magnetically actuated artificial cilia. The results show that narrow and closely spaced cilia create the largest flow, that metachronal waves along the width of the cilia create a significant flow in the direction of the cilia width and that the recovery stroke in the case of the out-of-plane actuation of the cilia strongly depends on the cilia width.</p

    Computational fluid-structure interaction in biology and soft robots:A review

    Get PDF
    The omnipresence of fluid-structure interaction (FSI) in biological systems is indisputable—from the vibration of leaves to the locomotion of fish, to the flying of birds, and to the cardiovascular biomechanics; FSI is indeed ubiquitous. Even in stimuli-responsive soft robots that typically operate inside a fluid medium, these physical interactions are prevalent. Therefore, it becomes mandatory to have a thorough understanding of their fully coupled physics involving strong two-way interaction between the solid and fluid domains. Although state-of-the-art computational frameworks and robust numerical techniques have been developed to study their complex physical mechanisms and associated nonlinearities involving multiple spatiotemporal scales, we believe that a timely review of the current development, emerging techniques, and future challenges in computational FSI would further stimulate research along this direction. Therefore, we explore the broad landscape of the myriad research avenues that herald FSI emphasizing their manifold occurrences in biology and advanced soft robotic technologies, while underlining the plethora of numerical techniques adopted to study these fundamental phenomena.</p

    Computational fluid-structure interaction in biology and soft robots:A review

    Get PDF
    The omnipresence of fluid-structure interaction (FSI) in biological systems is indisputable—from the vibration of leaves to the locomotion of fish, to the flying of birds, and to the cardiovascular biomechanics; FSI is indeed ubiquitous. Even in stimuli-responsive soft robots that typically operate inside a fluid medium, these physical interactions are prevalent. Therefore, it becomes mandatory to have a thorough understanding of their fully coupled physics involving strong two-way interaction between the solid and fluid domains. Although state-of-the-art computational frameworks and robust numerical techniques have been developed to study their complex physical mechanisms and associated nonlinearities involving multiple spatiotemporal scales, we believe that a timely review of the current development, emerging techniques, and future challenges in computational FSI would further stimulate research along this direction. Therefore, we explore the broad landscape of the myriad research avenues that herald FSI emphasizing their manifold occurrences in biology and advanced soft robotic technologies, while underlining the plethora of numerical techniques adopted to study these fundamental phenomena.</p

    Magnetic-field-induced propulsion of jellyfish-inspired soft robotic swimmers

    Get PDF
    The multifaceted appearance of soft robots in the form of swimmers, catheters, surgical devices, and drug-carrier vehicles in biomedical and microfluidic applications is ubiquitous today. Jellyfish-inspired soft robotic swimmers (jellyfishbots) have been fabricated and experimentally characterized by several researchers that reported their swimming kinematics and multimodal locomotion. However, the underlying physical mechanisms that govern magnetic-field-induced propulsion are not yet fully understood. Here, we use a robust and efficient computational framework to study the jellyfishbot swimming kinematics and the induced flow field dynamics through numerical simulation. We consider a two-dimensional model jellyfishbot that has flexible lappets, which are symmetric about the jellyfishbot center. These lappets exhibit flexural deformation when subjected to external magnetic fields to displace the surrounding fluid, thereby generating the thrust required for propulsion. We perform a parametric sweep to explore the jellyfishbot kinematic performance for different system parameters—structural, fluidic, and magnetic. In jellyfishbots, the soft magnetic composite elastomeric lappets exhibit temporal and spatial asymmetries when subjected to unsteady external magnetic fields. The average speed is observed to be dependent on both these asymmetries, quantified by the glide magnitude and the net area swept by the lappet tips per swimming cycle, respectively. We observe that a judicious choice of the applied magnetic field and remnant magnetization profile in the jellyfishbot lappets enhances both these asymmetries. Furthermore, the dependence of the jellyfishbot swimming speed upon the net area swept (spatial asymmetry) is twice as high as the dependence of speed on the glide ratio (temporal asymmetry). Finally, functional relationships between the swimming speed and different kinematic parameters and nondimensional numbers are developed. Our results provide guidelines for the design of improved jellyfish-inspired magnetic soft robotic swimmers

    Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells

    Get PDF
    The design and analysis of lattice structures manufactured using Additive Manufacturing (AM) technique is a new approach to create lightweight high-strength components. However, it is difficult for engineers to choose the proper unit cell for a certain function structure and loading case. In this paper, three beam-like lattice structures with triangular prism, square prism and hexagonal prism were designed, manufactured by SLM process using AlSi10Mg and tested. The mechanical performances of lattice structures with equal relative density, equal base area and height, and equal length for all unit cells were conducted by Finite Element Analysis (FEA). It was found that effective Young’s modulus is proportional to relative density, but with different affecting levels. When the lattice structures are designed with the same relative density or the same side lengths, the effective Young’s modulus of lattice structure with triangular prism exhibits the maximum value for both cases. When the lattice structures are designed with the same base areas for all unit cells, the effective Young’s modulus of lattice structures with square prism presents the maximum. FEA results also show that the maximum stress of lattice structures with triangular prisms in each comparison is at the lowest level and the stiffness-to-mass ratio remains at the maximum value, showing the overwhelming advantages in terms of mechanical strength. The excellent agreements between numerical results and experimental tests reveal the validity of FEA methods applied. The results in this work provide an explicit guideline to fabricate beam-like lattice structures with the best tensile and bending capabilities

    Self-organization of linear nanochannel networks

    Get PDF
    A theoretical study has been conducted to explore the mechanics of self-organizing channel networks with dimensions in the submicron range and nanorange. The channels form by the partial release and bond back of prestressed thin films. In the release phase, the film spontaneously buckles into wrinkles of a certain wavelength, followed by a bond-back phase in which the final channel geometry is established through cohesive interface attractions. Results are presented in terms of the channel spacing, height, and width as a function of the film stiffness, thickness, eigenstrain, etch width, and interface energy. We have identified two dimensionless parameters that fully quantify the network assembly, showing excellent agreement with experiments. Our results provide valuable insight for the design of submicron and nanoscale channel networks with specific geometries

    Fluid flow due to collective non-reciprocal motion of symmetrically-beating artificial cilia

    Get PDF
    Using a magneto-mechanical solid-fluid numerical model for permanently magnetic artificial cilia, we show that the metachronal motion of symmetrically beating cilia establishes a net pressure gradient in the direction of the metachronal wave, which creates a unidirectional flow. The flow generated is characterised as a function of the cilia spacing, the length of the metachronal wave, and a dimensionless parameter that characterises the relative importance of the viscous forces over the elastic forces in the cilia
    corecore