727 research outputs found

    Elementary structural building blocks encountered in silicon surface reconstructions

    Full text link
    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface

    Excitonic effects in solids described by time-dependent density functional theory

    Get PDF
    Starting from the many-body Bethe-Salpeter equation we derive an exchange-correlation kernel fxcf_{xc} that reproduces excitonic effects in bulk materials within time-dependent density functional theory. The resulting fxcf_{xc} accounts for both self-energy corrections and the electron-hole interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb tail. Taking the example of bulk silicon, we show that the α/q2- \alpha / q^2 divergency is crucial and can, in the case of continuum excitons, even be sufficient for reproducing the excitonic effects and yielding excellent agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur

    Vibrational Study of 13C-enriched C60 Crystals

    Full text link
    The infrared (IR) spectrum of solid C60 exhibits many weak vibrational modes. Symmetry breaking due to 13C isotopes provides a possible route for optically activating IR-silent vibrational modes. Experimental spectra and a semi-empirical theory on natural abundance and 13C-enriched single crystals of C60 are presented. By comparing the experimental results with the theoretical results, we exclude this isotopic activation mechanism from the explanation for weakly active fundamentals in the spectra.Comment: Accepted for Phys. Rev. B, typeset in REVTEX v3.0 in LaTeX. Postscript file including figures is available at http://insti.physics.sunysb.edu/~mmartin/papers/c13twocol2.ps File with figures will be e-mailed by reques

    Tourism for Sustainable Mountains Development:A Comparative Law Perspective

    Get PDF
    This contribution aims to assess whether existing mountain laws at the regional and national levels are equipped to ensure environmental protection in regulating and promoting mountain tourism, in the light of relevant guidance provided by the Convention on Biological Diversity. Two major challenges are identified: ensuring the full and effective participation of mountain communities in decision-making related to mountain tourism development, and the fair and equitable sharing of the benefits arising from sustainable mountain tourism

    Study of a Nonlocal Density scheme for electronic--structure calculations

    Full text link
    An exchange-correlation energy functional beyond the local density approximation, based on the exchange-correlation kernel of the homogeneous electron gas and originally introduced by Kohn and Sham, is considered for electronic structure calculations of semiconductors and atoms. Calculations are carried out for diamond, silicon, silicon carbide and gallium arsenide. The lattice constants and gaps show a small improvement with respect to the LDA results. However, the corresponding corrections to the total energy of the isolated atoms are not large enough to yield a substantial improvement for the cohesive energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic

    Non-adiabatic and time-resolved photoelectron spectroscopy for molecular systems

    Get PDF
    We quantify the non-adiabatic contributions to the vibronic sidebands of equilibrium and explicitly time-resolved non-equilibrium photoelectron spectra for a vibronic model system of Trans-Polyacetylene. Using exact diagonalization, we directly evaluate the sum-over-states expressions for the linear-response photocurrent. We show that spurious peaks appear in the Born-Oppenheimer approximation for the vibronic spectral function, which are not present in the exact spectral function of the system. The effect can be traced back to the factorized nature of the Born-Oppenheimer initial and final photoemission states and also persists when either only initial, or final states are replaced by correlated vibronic states. Only when correlated initial and final vibronic states are taken into account, the spurious spectral weights of the Born-Oppenheimer approximation are suppressed. In the non-equilibrium case, we illustrate for an initial Franck-Condon excitation and an explicit pump-pulse excitation how the vibronic wavepacket motion of the system can be traced in the time-resolved photoelectron spectra as function of the pump-probe delay

    Ab initio optical properties of Si(100)

    Full text link
    We compute the linear optical properties of different reconstructions of the clean and hydrogenated Si(100) surface within DFT-LDA, using norm-conserving pseudopotentials. The equilibrium atomic geometries of the surfaces, determined from self-consistent total energy calculations within the Car-Parrinello scheme, strongly influence Reflectance Anisotropy Spectra (RAS), showing differences between the p(2x2) and c(4x2)reconstructions. The Differential Reflectivity spectrum for the c(4x2) reconstruction shows a positive peak at energies < 1 eV, in agreement with experimental results.Comment: fig. 2 correcte
    corecore