727 research outputs found
Elementary structural building blocks encountered in silicon surface reconstructions
Driven by the reduction of dangling bonds and the minimization of surface
stress, reconstruction of silicon surfaces leads to a striking diversity of
outcomes. Despite this variety even very elaborate structures are generally
comprised of a small number of structural building blocks. We here identify
important elementary building blocks and discuss their integration into the
structural models as well as their impact on the electronic structure of the
surface
Excitonic effects in solids described by time-dependent density functional theory
Starting from the many-body Bethe-Salpeter equation we derive an
exchange-correlation kernel that reproduces excitonic effects in bulk
materials within time-dependent density functional theory. The resulting
accounts for both self-energy corrections and the electron-hole
interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb
tail. Taking the example of bulk silicon, we show that the
divergency is crucial and can, in the case of continuum excitons, even be
sufficient for reproducing the excitonic effects and yielding excellent
agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur
Vibrational Study of 13C-enriched C60 Crystals
The infrared (IR) spectrum of solid C60 exhibits many weak vibrational modes.
Symmetry breaking due to 13C isotopes provides a possible route for optically
activating IR-silent vibrational modes. Experimental spectra and a
semi-empirical theory on natural abundance and 13C-enriched single crystals of
C60 are presented. By comparing the experimental results with the theoretical
results, we exclude this isotopic activation mechanism from the explanation for
weakly active fundamentals in the spectra.Comment: Accepted for Phys. Rev. B, typeset in REVTEX v3.0 in LaTeX.
Postscript file including figures is available at
http://insti.physics.sunysb.edu/~mmartin/papers/c13twocol2.ps File with
figures will be e-mailed by reques
Tourism for Sustainable Mountains Development:A Comparative Law Perspective
This contribution aims to assess whether existing mountain laws at the regional and national levels are equipped to ensure environmental protection in regulating and promoting mountain tourism, in the light of relevant guidance provided by the Convention on Biological Diversity. Two major challenges are identified: ensuring the full and effective participation of mountain communities in decision-making related to mountain tourism development, and the fair and equitable sharing of the benefits arising from sustainable mountain tourism
Study of a Nonlocal Density scheme for electronic--structure calculations
An exchange-correlation energy functional beyond the local density
approximation, based on the exchange-correlation kernel of the homogeneous
electron gas and originally introduced by Kohn and Sham, is considered for
electronic structure calculations of semiconductors and atoms. Calculations are
carried out for diamond, silicon, silicon carbide and gallium arsenide. The
lattice constants and gaps show a small improvement with respect to the LDA
results.
However, the corresponding corrections to the total energy of the isolated
atoms are not large enough to yield a substantial improvement for the cohesive
energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure
Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation
The connection between many-body theory (MBPT)--in perturbative and
non-perturbative form--and quantum-electrodynamics (QED) is reviewed for
systems of two fermions in an external field. The treatment is mainly based
upon the recently developed covariant-evolution-operator method for QED
calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a
structure quite akin to that of many-body perturbation theory. At the same time
this procedure is closely connected to the S-matrix and the Green's-function
formalisms and can therefore serve as a bridge between various approaches. It
is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to
a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A
Bloch equation in commutator form that can be used for an "extended" or
quasi-degenerate model space is derived. It has the same relation to the BS
equation as has the standard Bloch equation to the ordinary Schroedinger
equation and can be used to generate a perturbation expansion compatible with
the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic
Non-adiabatic and time-resolved photoelectron spectroscopy for molecular systems
We quantify the non-adiabatic contributions to the vibronic sidebands of
equilibrium and explicitly time-resolved non-equilibrium photoelectron spectra
for a vibronic model system of Trans-Polyacetylene. Using exact
diagonalization, we directly evaluate the sum-over-states expressions for the
linear-response photocurrent. We show that spurious peaks appear in the
Born-Oppenheimer approximation for the vibronic spectral function, which are
not present in the exact spectral function of the system. The effect can be
traced back to the factorized nature of the Born-Oppenheimer initial and final
photoemission states and also persists when either only initial, or final
states are replaced by correlated vibronic states. Only when correlated initial
and final vibronic states are taken into account, the spurious spectral weights
of the Born-Oppenheimer approximation are suppressed. In the non-equilibrium
case, we illustrate for an initial Franck-Condon excitation and an explicit
pump-pulse excitation how the vibronic wavepacket motion of the system can be
traced in the time-resolved photoelectron spectra as function of the pump-probe
delay
Ab initio optical properties of Si(100)
We compute the linear optical properties of different reconstructions of the
clean and hydrogenated Si(100) surface within DFT-LDA, using norm-conserving
pseudopotentials. The equilibrium atomic geometries of the surfaces, determined
from self-consistent total energy calculations within the Car-Parrinello
scheme, strongly influence Reflectance Anisotropy Spectra (RAS), showing
differences between the p(2x2) and c(4x2)reconstructions. The Differential
Reflectivity spectrum for the c(4x2) reconstruction shows a positive peak at
energies < 1 eV, in agreement with experimental results.Comment: fig. 2 correcte
- …
