816 research outputs found
Discovery of Radio Emission from the Tight M8 Binary: LP 349-25
We present radio observations of 8 ultracool dwarfs with a narrow spectral
type range (M8-M9.5) using the Very Large Array at 8.5 GHz. Only the tight M8
binary LP 349-25 was detected. LP 349-25 is the tenth ultracool dwarf system
detected in radio and its trigonometric parallax pi = 67.6 mas, recently
measured by Gatewood et al., makes it the furthest ultracool system detected by
the Very Large Array to date, and the most radio-luminous outside of obvious
flaring activity or variability. With a separation of only 1.8 AU, masses of
the components of LP 349-25 can be measured precisely without any theoretical
assumptions (Forveille et al.), allowing us to clarify their fully-convective
status and hence the kind of magnetic dynamo in these components which may play
an important role to explain our detection of radio emission from these
objects. This also makes LP 349-25 an excellent target for further studies with
better constraints on the correlations between X-ray, radio emission and
stellar parameters such as mass, age, temperature, and luminosity in ultracool
dwarfs.Comment: accepted by ApJ, referee's comments included, typo in equation 1
correcte
X-ray Flares of EV Lac: Statistics, Spectra, Diagnostics
We study the spectral and temporal behavior of X-ray flares from the active
M-dwarf EV Lac in 200 ks of exposure with the Chandra/HETGS. We derive flare
parameters by fitting an empirical function which characterizes the amplitude,
shape, and scale. The flares range from very short (<1 ks) to long (10 ks)
duration events with a range of shapes and amplitudes for all durations. We
extract spectra for composite flares to study their mean evolution and to
compare flares of different lengths. Evolution of spectral features in the
density-temperature plane shows probable sustained heating. The short flares
are significantly hotter than the longer flares. We determined an upper limit
to the Fe K fluorescent flux, the best fit value being close to what is
expected for compact loops.Comment: 9 pages; 9 figures; latex/emulateapj style; Submitted to The
Astrophysical Journa
Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing
The mammalian motor cortex typically innervates motor neurons indirectly via oligosynaptic pathways. However, evolution of skilled digit movements in humans, apes, and some monkey species is associated with the emergence of abundant monosynaptic cortical projections onto spinal motor neurons innervating distal limb muscles. Rats perform skilled movements with their whiskers, and we examined the possibility that the rat vibrissa motor cortex (VMC) projects monosynaptically onto facial motor neurons controlling the whisker movements. First, single injections of lentiviruses to VMC sites identified by intracortical microstimulations were used to label a distinct subpopulation of VMC axons or presynaptic terminals by expression of enhanced green fluorescent protein (GFP) or GFP-tagged synaptophysin, respectively. Four weeks after the injections, GFP and synaptophysin-GFP labeling of axons and putative presynaptic terminals was detected in the lateral portion of the facial nucleus (FN), in close proximity to motor neurons identified morphologically and by axonal back-labeling from the whisker follicles. The VMC projections were detected bilaterally, with threefold larger density of labeling in the contralateral FN. Next, multiple VMC injections were used to label a large portion of VMC axons, resulting in overall denser but still laterally restricted FN labeling. Ultrastructural analysis of the GFP-labeled VMC axons confirmed the existence of synaptic contacts onto dendrites and somata of FN motor neurons. These findings provide anatomical demonstration of monosynaptic VMC-to-FN pathway in the rat and show that lentivirus-based expression of GFP and GFP-tagged presynaptic proteins can be used as a high-resolution neuroanatomical tracing method
Thermodynamics of C incorporation on Si(100) from ab initio calculations
We study the thermodynamics of C incorporation on Si(100), a system where
strain and chemical effects are both important. Our analysis is based on
first-principles atomistic calculations to obtain the important lowest energy
structures, and a classical effective Hamiltonian which is employed to
represent the long-range strain effects and incorporate the thermodynamic
aspects. We determine the equilibrium phase diagram in temperature and C
chemical potential, which allows us to predict the mesoscopic structure of the
system that should be observed under experimentally relevant conditions.Comment: 5 pages, 3 figure
Hydrogen Balmer Line Broadening in Solar and Stellar Flares
The broadening of the hydrogen lines during flares is thought to result from
increased charge (electron, proton) density in the flare chromosphere. However,
disagreements between theory and modeling prescriptions have precluded an
accurate diagnostic of the degree of ionization and compression resulting from
flare heating in the chromosphere. To resolve this issue, we have incorporated
the unified theory of electric pressure broadening of the hydrogen lines into
the non-LTE radiative transfer code RH. This broadening prescription produces a
much more realistic spectrum of the quiescent, A0 star Vega compared to the
analytic approximations used as a damping parameter in the Voigt profiles. We
test recent radiative-hydrodynamic (RHD) simulations of the atmospheric
response to high nonthermal electron beam fluxes with the new broadening
prescription and find that the Balmer lines are over-broadened at the densest
times in the simulations. Adding many simultaneously heated and cooling model
loops as a "multithread" model improves the agreement with the observations. We
revisit the three-component phenomenological flare model of the YZ CMi
Megaflare using recent and new RHD models. The evolution of the broadening,
line flux ratios, and continuum flux ratios are well-reproduced by a
multithread model with high-flux nonthermal electron beam heating, an extended
decay phase model, and a "hot spot" atmosphere heated by an ultrarelativistic
electron beam with reasonable filling factors: 0.1%, 1%, and 0.1% of the
visible stellar hemisphere, respectively. The new modeling motivates future
work to understand the origin of the extended gradual phase emission.Comment: 31 pages, 13 figures, 2 tables, accepted for publication in the
Astrophysical Journa
Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation
The maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus has been reported to require both a persistent increase in phosphorylation and the synthesis of new proteins. The increased activity of protein kinase C (PKC) during the maintenance phase of LTP may result from the formation of PKMζ, the constitutively active fragment of a specific PKC isozyme. To define the relationship among PKMζ, longterm EPSP responses, and the requirement for new protein synthesis, we examined the regulation of PKMζ after subthreshold stimulation that produced short-term potentiation (STP) and after suprathreshold stimulation by single and multiple tetanic trains that produced LTP. We found that, although no persistent increase in PKMζ followed STP, the degree of long-term EPSP potentiation was linearly correlated with the increase of PKMζ. The increase was first observed 10 min after a tetanus that induced LTP and lasted for at least 2 hr, in parallel with the persistence of EPSP enhancement. Both the maintenance of LTP and the long-term increase in PKMζ were blocked by the protein synthesis inhibitors anisomycin and cycloheximide. These results suggest that PKMζ is a component of a protein synthesis-dependent mechanism for persistent phosphorylation in LTP
The Implications of M Dwarf Flares on the Detection and Characterization of Exoplanets at Infrared Wavelengths
We present the results of an observational campaign which obtained high time
cadence, high precision, simultaneous optical and IR photometric observations
of three M dwarf flare stars for 47 hours. The campaign was designed to
characterize the behavior of energetic flare events, which routinely occur on M
dwarfs, at IR wavelengths to milli-magnitude precision, and quantify to what
extent such events might influence current and future efforts to detect and
characterize extrasolar planets surrounding these stars. We detected and
characterized four highly energetic optical flares having U-band total energies
of ~7.8x10^30 to ~1.3x10^32 ergs, and found no corresponding response in the J,
H, or Ks bandpasses at the precision of our data. For active dM3e stars, we
find that a ~1.3x10^32 erg U-band flare (delta Umax ~1.5 mag) will induce <8.3
(J), <8.5 (H), and <11.7 (Ks) milli-mags of a response. A flare of this energy
or greater should occur less than once per 18 hours. For active dM4.5e stars,
we find that a ~5.1x10^31 erg U-band flare (delta Umax ~1.6 mag) will induce
<7.8 (J), <8.8 (H), and <5.1 (Ks) milli-mags of a response. A flare of this
energy or greater should occur less than once per 10 hours. No evidence of
stellar variability not associated with discrete flare events was observed at
the level of ~3.9 milli-mags over 1 hour time-scales and at the level of ~5.6
milli-mags over 7.5 hour time-scales. We therefore demonstrate that most M
dwarf stellar activity and flares will not influence IR detection and
characterization studies of M dwarf exoplanets above the level of ~5-11
milli-mags, depending on the filter and spectral type. We speculate that the
most energetic megaflares on M dwarfs, which occur at rates of once per month,
are likely to be easily detected in IR observations with sensitivity of tens of
milli-mags.Comment: Accepted in Astronomical Journal, 17 pages, 6 figure
The RRAT Trap: Interferometric Localization of Radio Pulses from J0628+0909
We present the first blind interferometric detection and imaging of a
millisecond radio transient with an observation of transient pulsar J0628+0909.
We developed a special observing mode of the Karl G. Jansky Very Large Array
(VLA) to produce correlated data products (i.e., visibilities and images) on a
time scale of 10 ms. Correlated data effectively produce thousands of beams on
the sky that can localize sources anywhere over a wide field of view. We used
this new observing mode to find and image pulses from the rotating radio
transient (RRAT) J0628+0909, improving its localization by two orders of
magnitude. Since the location of the RRAT was only approximately known when
first observed, we searched for transients using a wide-field detection
algorithm based on the bispectrum, an interferometric closure quantity. Over 16
minutes of observing, this algorithm detected one transient offset roughly 1'
from its nominal location; this allowed us to image the RRAT to localize it
with an accuracy of 1.6". With a priori knowledge of the RRAT location, a
traditional beamforming search of the same data found two, lower significance
pulses. The refined RRAT position excludes all potential multiwavelength
counterparts, limiting its optical luminosity to L_i'<1.1x10^31 erg/s and
excluding its association with a young, luminous neutron star.Comment: Submitted to ApJ, 7 pages, 5 figure
Genetic Inhibition of Phosphorylation of the Translation Initiation Factor eIF2alpha Does Not Block Abeta-Dependent Elevation of BACE1 and APP Levels or Reduce Amyloid Pathology in a Mouse Model of Alzheimer's Disease
beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) initiates the production of beta-amyloid (Abeta), the major constituent of amyloid plaques in Alzheimer's disease (AD). BACE1 is elevated approximately 2-3 fold in AD brain and is concentrated in dystrophic neurites near plaques, suggesting BACE1 elevation is Abeta-dependent. Previously, we showed that phosphorylation of the translation initiation factor eIF2alpha de-represses translation of BACE1 mRNA following stress such as energy deprivation. We hypothesized that stress induced by Abeta might increase BACE1 levels by the same translational mechanism involving eIF2alpha phosphorylation. To test this hypothesis, we used three different genetic strategies to determine the effects of reducing eIF2alpha phosphorylation on Abeta-dependent BACE1 elevation in vitro and in vivo: 1) a two-vector adeno-associated virus (AAV) system to express constitutively active GADD34, the regulatory subunit of PP1c eIF2alpha phosphatase; 2) a non-phosphorylatable eIF2alpha S51A knockin mutation; 3) a BACE1-YFP transgene lacking the BACE1 mRNA 5' untranslated region (UTR) required for eIF2alpha translational regulation. The first two strategies were used in primary neurons and 5XFAD transgenic mice, while the third strategy was employed only in 5XFAD mice. Despite very effective reduction of eIF2alpha phosphorylation in both primary neurons and 5XFAD brains, or elimination of eIF2alpha-mediated regulation of BACE1-YFP mRNA translation in 5XFAD brains, Abeta-dependent BACE1 elevation was not decreased. Additionally, robust inhibition of eIF2alpha phosphorylation did not block Abeta-dependent APP elevation in primary neurons, nor did it reduce amyloid pathology in 5XFAD mice. We conclude that amyloid-associated BACE1 elevation is not caused by translational de-repression via eIF2alpha phosphorylation, but instead appears to involve a post-translational mechanism. These definitive genetic results exclude a role for eIF2alpha phosphorylation in Abeta-dependent BACE1 and APP elevation. We suggest a vicious pathogenic cycle wherein Abeta42 toxicity induces peri-plaque BACE1 and APP accumulation in dystrophic neurites leading to exacerbated Abeta production and plaque progression
- …
