514 research outputs found
Decaying Dark Energy in Higher-Dimensional Gravity
We use data from observational cosmology to put constraints on
higher-dimensional extensions of general relativity in which the effective
four-dimensional dark-energy density (or cosmological "constant") decays with
time. In particular we study the implications of this decaying dark energy for
the age of the universe, large-scale structure formation, big-bang
nucleosynthesis and the magnitude-redshift relation for Type Ia supernovae. Two
of these tests (age and the magnitude-redshift relation) place modest lower
limits on the free parameter of the theory, a cosmological length scale L akin
to the de Sitter radius. These limits will improve if experimental
uncertainties on supernova magnitudes can be reduced around z=1.Comment: 11 pages, 5 figures, submitted to A&
Constraints on Kaluza-Klein gravity from Gravity Probe B
Using measurements of geodetic precession from Gravity Probe B, we constrain
possible departures from Einstein's General Relativity for a spinning test body
in Kaluza-Klein gravity with one additional space dimension. We consider the
two known static and spherically symmetric solutions of the 5D field equations
(the soliton and canonical metrics) and obtain new limits on the free
parameters associated with each. The theory is consistent with observation but
must be "close to 4D" in both cases.Comment: 9 pages, 1 figure; General Relativity and Gravitation, in pres
Dynamics of a Generalized Cosmological Scalar-Tensor Theory
A generalized scalar-tensor theory is investigated whose cosmological term
depends on both a scalar field and its time derivative. A correspondence with
solutions of five-dimensional Space-Time-Matter theory is noted. Analytic
solutions are found for the scale factor, scalar field and cosmological term.
Models with free parameters of order unity are consistent with recent
observational data and could be relevant to both the dark-matter and
cosmological-"constant" problems.Comment: 13 page
Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations
An exact class of solutions of the 5D vacuum Einstein field equations (EFEs)
is obtained. The metric coefficients are found to be non-separable functions of
time and the extra coordinate and the induced metric on = constant
hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D
manifold and 3D and 4D submanifolds are in general curved, which distinguishes
this solution from previous ones in the literature. The singularity structure
of the manifold is explored: some models in the class do not exhibit a big
bang, while other exhibit a big bang and a big crunch. For the models with an
initial singularity, the equation of state of the induced matter evolves from
radiation like at early epochs to Milne-like at late times and the big bang
manifests itself as a singular hypersurface in 5D. The projection of comoving
5D null geodesics onto the 4D submanifold is shown to be compatible with
standard 4D comoving trajectories, while the expansion of 5D null congruences
is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy
Induced Matter and Particle Motion in Non-Compact Kaluza-Klein Gravity
We examine generalizations of the five-dimensional canonical metric by
including a dependence of the extra coordinate in the four-dimensional metric.
We discuss a more appropriate way to interpret the four-dimensional
energy-momentum tensor induced from the five-dimensional space-time and show it
can lead to quite different physical situations depending on the interpretation
chosen. Furthermore, we show that the assumption of five-dimensional null
trajectories in Kaluza-Klein gravity can correspond to either four-dimensional
massive or null trajectories when the path parameterization is chosen properly.
Retaining the extra-coordinate dependence in the metric, we show the
possibility of a cosmological variation in the rest masses of particles and a
consequent departure from four-dimensional geodesic motion by a geometric
force. In the examples given, we show that at late times it is possible for
particles traveling along 5D null geodesics to be in a frame consistent with
the induced matter scenario.Comment: 29 pages, accepted to GR
Possible Wormhole Solutions in (4+1) Gravity
We extend previous analyses of soliton solutions in (4+1) gravity to new
ranges of their defining parameters. The geometry, as studied using invariants,
has the topology of wormholes found in (3+1) gravity. In the induced-matter
picture, the fluid does not satisfy the strong energy conditions, but its
gravitational mass is positive. We infer the possible existance of (4+1)
wormholes which, compared to their (3+1) counterparts, are less exotic.Comment: 3 pages, latex, 1 figure
Geometrical features of (4+d) gravity
We obtain the vacuum spherical symmetric solutions for the gravitational
sector of a (4+d)-dimensional Kaluza-Klein theory. In the various regions of
parameter space, the solutions can describe either naked singularities or
black-holes or wormholes. We also derive, by performing a conformal rescaling,
the corresponding picture in the four-dimensional space-time.Comment: 10 pages, LateX2e, to appear in Phys.Rev.
Two-component mixture of charged particles confined in a channel: melting
The melting of a binary system of charged particles confined in a {\it
quasi}-one-dimensional parabolic channel is studied through Monte Carlo
simulations. At zero temperature the particles are ordered in parallel chains.
The melting is anisotropic and different melting temperatures are obtained
according to the spatial direction, and the different types of particles
present in the system. Melting is very different for the single-, two- and
four-chain configurations. A temperature induced structural phase transition is
found between two different four chain ordered states which is absent in the
mono-disperse system. In the mixed regime, where the two types of particles are
only slightly different, melting is almost isotropic and a thermally induced
homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12
figures
Dynamics in binary cluster crystals
As a result of the application of coarse-graining procedures to describe
complex fluids, the study of systems consisting of particles interacting
through bounded, repulsive pair potentials has become of increasing interest in
the last years. A well known example is the so-called Generalized Exponential
Model (GEM-), for which the interaction between particles is described by
the potential . Interactions with
lead to the formation of a novel phase of soft matter consisting of cluster
crystals. Recent studies on the phase behavior of binary mixtures of GEM-
particles have provided evidence for the formation of novel kinds of alloys,
depending on the cross interactions between the two species. This work aims to
study the dynamic behavior of such binary mixtures by means of extensive
molecular dynamics simulations, and in particular to investigate the effect of
the addition of non-clustering particles on the dynamic scenario of
one-component cluster crystals. Analogies and differences with the
one-component case are revealed and discussed by analyzing self- and collective
dynamic correlators.Comment: 17 pages, 8 figures, submitted to JSTA
- …
