3,580 research outputs found

    Ab-initio calculation of the effect of stress on the chemical activity of graphene

    Get PDF
    Graphene layers are stable, hard, and relatively inert. We study how tensile stress affects σ\sigma and π\pi bonds and the resulting change in the chemical activity. Stress affects more strongly π\pi bonds that can become chemically active and bind to adsorbed species more strongly. Upon stretch, single C bonds are activated in a geometry mixing 120o120^{o} and 90o90^{o}; an intermediate state between sp2sp^{2} and sp3sp^{3} bonding. We use ab-initio density functional theory to study the adsorption of hydrogen on large clusters and 2D periodic models for graphene. The influence of the exchange-correlation functional on the adsorption energy is discussed

    Strongly correlated fermions on a kagome lattice

    Full text link
    We study a model of strongly correlated spinless fermions on a kagome lattice at 1/3 filling, with interactions described by an extended Hubbard Hamiltonian. An effective Hamiltonian in the desired strong correlation regime is derived, from which the spectral functions are calculated by means of exact diagonalization techniques. We present our numerical results with a view to discussion of possible signatures of confinement/deconfinement of fractional charges.Comment: 10 pages, 10 figure

    Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides

    Full text link
    The effective quantum pseudospin-1/2 model for interacting rare-earth magnetic moments, which are locally described with atomic doublets, is studied theoretically for magnetic pyrochlore oxides. It is derived microscopically for localized Pr^{3+} 4f moments in Pr_2TM_2O_7 (TM = Zr, Sn, Hf, and Ir) by starting from the atomic non-Kramers magnetic doublets and performing the strong-coupling perturbation expansion of the virtual electron transfer between the Pr 4f and O 2p electrons. The most generic form of the nearest-neighbor anisotropic superexchange pseudospin-1/2 Hamiltonian is also constructed from the symmetry properties, which is applicable to Kramers ions Nd^{3+}, Sm^{3+}, and Yb^{3+} potentially showing large quantum effects. The effective model is then studied by means of a classical mean-field theory and the exact diagonalization on a single tetrahedron and on a 16-site cluster. These calculations reveal appreciable quantum fluctuations leading to quantum phase transitions to a quadrupolar state as a melting of spin ice for the Pr^{3+} case. The model also shows a formation of cooperative quadrupole moment and pseudospin chirality on tetrahedrons. A sign of a singlet quantum spin ice is also found in a finite region in the space of coupling constants. The relevance to the experiments is discussed.Comment: 18 pages including 14 figures; Comparison with the magnetization curve on Pr2Ir2O7 included; to appear in Phys. Rev.

    Structure and optical properties of high light output halide scintillators

    Full text link
    Structural and optical properties of several high light output halide scintillators and closely related materials are presented based on first principles calculations. The optical properties are based on the Engel-Vosko generalized gradient approximation and the recently developed density functional of Tran and Blaha. The materials investigated are BaBr2_2, BaIBr, BaCl2_2, BaF2_2, BaI2_2, BiI3_3, CaI2_2, Cs2LiYCl_2LiYCl_6,CsBa, CsBa_2BrBr_5,CsBa, CsBa_2II_5,K, K_2LaBrLaBr_5,K, K_2LaClLaCl_5,K,K_2LaILaI_5,LaBr, LaBr_3,LaCl, LaCl_3,SrBr, SrBr_2,andYI, and YI_3.ForcomparisonresultsarepresentedfortheoxideCdWO. For comparison results are presented for the oxide CdWO_4.WefindthattheTranBlahafunctionalgivesgreatlyimprovedbandgapsandopticalpropertiesinthisclassofmaterials.Furthermore,wefindthatunlikeCdWO. We find that the Tran Blaha functional gives greatly improved band gaps and optical properties in this class of materials. Furthermore, we find that unlike CdWO_4$, most of these halides are highly isotropic from an optical point of view even though in many cases the crystal structures and other properties are not. This general result is rationalized in terms of halide chemistry. Implications for the development of ceramic halide scintillators are discussed

    Percolative conductivity in alkaline earth silicate melts and glasses

    Full text link
    Ion conducting (CaO)x(SiO2)1x(CaO)_x(SiO_2)_{1-x} glasses and melts show a threshold behaviour in dc conductivity near x=xt=0.50x=x_t=0.50, with conductivities increasing linearly at x>xtx>x_t. We show that the behaviour can be traced to a rigid (x0.50x0.50) elastic phase transition near x=xtx=x_t. In the floppy phase, conductivity enhancement is traced to increased mobility or diffusion of Ca2+Ca^{2+} carriers as the modified network elastically softens.Comment: 15 pages, 5 figures. Europhysics Letters (2003), in pres

    Realizing Colloidal Artificial Ice on Arrays of Optical Traps

    Full text link
    We demonstrate how a colloidal version of artificial ice can be realized on optical trap lattices. Using numerical simulations, we show that this system obeys the ice rules and that for strong colloid-colloid interactions, an ordered ground state appears. We show that the ice rule ordering can occur for systems with as few as twenty-four traps and that the ordering transition can be observed at constant temperature by varying the barrier strength of the traps.Comment: 4 pages, 3 postscript figures; version to appear in Phys. Rev. Let

    Statistical properties of Klauder-Perelomov coherent states for the Morse potential

    Full text link
    We present in this paper a realistic construction of the coherent states for the Morse potential using the Klauder-Perelomov approach . We discuss the statistical properties of these states, by deducing the Q- and P-distribution functions. The thermal expectations for the quantum canonical ideal gas of the Morse oscillators are also calculated

    Impurity induced spin-orbit coupling in graphene

    Full text link
    We study the effect of impurities in inducing spin-orbit coupling in graphene. We show that the sp3 distortion induced by an impurity can lead to a large increase in the spin-orbit coupling with a value comparable to the one found in diamond and other zinc-blende semiconductors. The spin-flip scattering produced by the impurity leads to spin scattering lengths of the order found in recent experiments. Our results indicate that the spin-orbit coupling can be controlled via the impurity coverage.Comment: 4 pages, 6 figure

    Effective masses for zigzag nanotubes in magnetic fields

    Full text link
    We consider the Schr\"odinger operator with a periodic potential on quasi-1D models of zigzag single-wall carbon nanotubes in magnetic field. The spectrum of this operator consists of an absolutely continuous part (intervals separated by gaps) plus an infinite number of eigenvalues with infinite multiplicity. We obtain identities and a priori estimates in terms of effective masses and gap lengths

    Variational ground states of the two-dimensional Hubbard model

    Get PDF
    Recent refinements of analytical and numerical methods have improved our understanding of the ground-state phase diagram of the two-dimensional (2D) Hubbard model. Here we focus on variational approaches, but comparisons with both Quantum Cluster and Gaussian Monte Carlo methods are also made. Our own ansatz leads to an antiferromagnetic ground state at half filling with a slightly reduced staggered order parameter (as compared to simple mean-field theory). Away from half filling, we find d-wave superconductivity, but confined to densities where the Fermi surface passes through the antiferromagnetic zone boundary (if hopping between both nearest-neighbour and next-nearest-neighbour sites is considered). Our results agree surprisingly well with recent numerical studies using the Quantum Cluster method. An interesting trend is found by comparing gap parameters (antiferromagnetic or superconducting) obtained with different variational wave functions. They vary by an order of magnitude and thus cannot be taken as a characteristic energy scale. In contrast, the order parameter is much less sensitive to the degree of sophistication of the variational schemes, at least at and near half filling.Comment: 18 pages, 4 figures, to be published in New J. Phy
    corecore