18 research outputs found
Phytochemical screening and GC-MS analysis of ethanolic extract of <i>Acacia planifrons</i> seeds
Synthesis, Characterization and DFT Calculations of a Novel Pyrazole Derivative 4-(1-Phenyl-5-(p-Tolyl)-2,5-Dihydro-1H-Pyrazol-3-Yl)Benzo[c][1,2,5]Oxadiazole
s Heterocyclic compounds like pyrazoline was synthesized along to the reaction of phenyl hydrazine hydrochloride with 3-(benzo [c][1,2,5] oxadiazol-4-yl)-1-phenylprop-2-en-1-one undergoing in reflux condition. This compound going to begood yields.A thoroughly fresh compound wasindicating by IR, 1H, and 13C elemental analysis. Stimulate the calculated HOMO/LUMO, MEP and mulliken population analysis and NLO was compare to the experimental analysis of this data. The optimized theoretical structure parameters betide collate to the satisfied assent with the experimental structure. Keywords: Pyrazoline, Heterocycles, NLO, HOMO/LUMO, Optimized structure, Mulliken charges. Graphical Abstract</jats:p
A highly efficient 2D siloxene coated Ni foam catalyst for methane dry reforming and an effective approach to recycle the spent catalyst for energy storage applications
An effective approach to reuse the carbon deposited spent catalyst (siloxene/Ni foam) after the methane dry reforming process is demonstrated by utilizing them as electrodes for supercapacitor devices.</p
Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels
Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producing in excess of 40 g of solvents (acetone, butanol and ethanol) between the completely immiscible extractant and aqueous phases of the bioreactor. After distillation of the extractant phase, the acetone, butanol and ethanol mixture is upgraded to long-chain ketones over a palladium-hydrotalcite (Pd-HT) catalyst. This reaction is generally carried out in batch with a high-pressure Q-tube for 20 h at 250 degrees C. Following this protocol enables the production of similar to 0.5 g of high-value biofuel precursors from a 1.7-g portion of fermentation solvents
