418 research outputs found

    Effect of conduction electron interactions on Anderson impurities

    Full text link
    The effect of conduction electron interactions for an Anderson impurity is investigated in one dimension using a scaling approach. The flow diagrams are obtained by solving the renormalization group equations numerically. It is found that the Anderson impurity case is different from its counterpart -- the Kondo impurity case even in the local moment region. The Kondo temperature for an Anderson impurity shows nonmonotonous behavior, increasing for weak interactions but decreasing for strong interactions. The implication of the study to other related impurity models is also discussed.Comment: 10 pages, revtex, 4 figures (the postscript file is included), to appear in Phys. Rev. B (Rapid Commun.

    Asymptotically exact solution of a local copper-oxide model

    Full text link
    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities.Comment: 11 pages, 1 postcript figure is appended as self-extracting archive, Revtex 2.0, ICTP preprint 199

    Unified description of Fermi and non-Fermi liquid behavior in a conserving slave boson approximation for strongly correlated impurity models

    Full text link
    We show that the presence of Fermi or non-Fermi liquid behavior in the SU(N) x SU(M) Anderson impurity models may be read off the infrared threshold exponents governing the spinon and holon dynamics in a slave boson representation of these models. We construct a conserving T-matrix approximation which recovers the exact exponents with good numerical accuracy. Our approximation includes both coherent spin flip scattering and charge fluctuation processes. For the single-channel case the tendency to form bound states drastically modifies the low energy behavior. For the multi-channel case in the Kondo limit the bound state contributions are unimportant.Comment: 4 pages, Latex, 3 postscript figures included Final version with minor changes in wording, to appear in Phys.Rev.Let

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig

    Singular Effects of Impurities near the Ferromagnetic Quantum-Critical Point

    Full text link
    Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic transition are obtained. In the quasi-classical regime, the dynamical spin fluctuations enhance the Kondo temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties are those of a line of critical points of the multichannel Kondo problem with the number of channels increasing as the critical point is approached, except at unattainably low temperatures where a single channel wins out.Comment: 4 pages, 2 figure

    Non-Fermi liquid behavior in an extended Anderson model

    Full text link
    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-channel Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed.Comment: REVTEX, 17 pages, no figures, to be published in Phys. Rev.

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Pedestrian Approach to the Two-Channel Kondo Model

    Full text link
    We reformulate the two-channel Kondo model to explicitly remove the unscattered charge degrees of freedom. This procedure permits us to move the non-Fermi liquid fixed point to infinite coupling where we can apply a perturbative strong-coupling expansion. The fixed point Hamiltonian involves a three-body Majorana zero mode whose scattering effects give rise to marginal self-energies. The compactified model is the N=3 member of a family of "O(N)" Kondo models that can be solved by semiclassical methods in the large NN limit. For odd NN, {\em fermionic} "Kink" fluctuations about the N=N=\infty mean-field theory generate a fermionic NN-body bound-state which asymptotically decouples at low energies. For N=3, our semi-classical methods fully recover the non-Fermi liquid physics of the original two channel model. Using the same methods, we find that the corresponding O(3) Kondo lattice model develops a spin-gap and a gapless band of coherently propagating three-body bound-states. Its strong-coupling limit offers a rather interesting realization of marginal Fermi liquid behavior.Comment: 17 pages, Revtex 3.0. Replaced with fully compiled postscript file
    corecore