9,775 research outputs found
Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation
In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation
Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry
In semiconductor heterostructures, bulk and structural inversion asymmetry
and spin-orbit coupling induce a k-dependent spin splitting of valence and
conduction subbands, which can be viewed as being caused by momentum-dependent
crystal magnetic fields. This paper studies the influence of these effective
magnetic fields on the intersubband spin dynamics in an asymmetric n-type
GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin
plasmons using linear response theory. The so-called D'yakonov-Perel'
decoherence mechanism is inactive for collective intersubband excitations,
i.e., crystal magnetic fields do not lead to decoherence of spin plasmons.
Instead, we predict that the main signature of bulk and structural inversion
asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting
of the spin plasmon dispersion. The importance of many-body effects is pointed
out, and conditions for experimental observation with inelastic light
scattering are discussed.Comment: 8 pages, 6 figure
Effect of bulk inversion asymmetry on the Datta-Das transistor
A model of the Datta-Das spin field-effect transistor is presented which, in
addition to the Rashba interaction, takes into account the influence of bulk
inversion asymmetry of zinc-blende semiconductors. In the presence of bulk
inversion asymmetry, the conductance is found to depend significantly on the
crystallographic orientation of the channel. We determine the channel direction
optimal for the observation of the Datta-Das effect in GaAs and InAs-based
devices.Comment: 4 pages, Revtex4, 4 EPS figure
Magnetic field effects on spin relaxation in heterostructures
Effect of magnetic field on electron spin relaxation in quantum wells is
studied theoretically. We have shown that Larmor effect and cyclotron motion of
carriers can either jointly suppress D'yakonov-Perel' spin relaxation or
compensate each other. The spin relaxation rates tensor is derived for any
given direction of the external field and arbitrary ratio of bulk and
structural contributions to spin splitting. Our results are applied to the
experiments on electron spin resonance in SiGe heterostructures, and enable us
to extract spin splitting value for such quantum wells.Comment: 6 pages, 4 figure
Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors
A theory for longitudinal (T1) and transverse (T2) electron spin coherence
times in zincblende semiconductor quantum wells is developed based on a
non-perturbative nanostructure model solved in a fourteen-band restricted basis
set. Distinctly different dependences of coherence times on mobility,
quantization energy, and temperature are found from previous calculations.
Quantitative agreement between our calculations and measurements is found for
GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure
Recommended from our members
Revisiting Politics in Political CSR: How coercive and deliberative dynamics operate through institutional work in a Colombian company
This article analyses the political dynamics taking place within a Colombian supplier company during the implementation of a client’s global Corporate Social Responsibility (CSR) programme, which radically transformed the local understandings of the supplier’s social responsibilities. We distinguish two forms of politics in political CSR – coercive and deliberative politics – and examine how they unfold through lower-level managers’ institutional work. Our longitudinal case study identifies four types of institutional work, which combine into three political configurations – irreconcilable politics, complementary politics and aligned deliberative politics – resulting in the hybridization of explicit and implicit CSR. By analysing how local managers from emerging countries and at the bottom of the supply chain cope with the new political role of MNCs, we expand the political microfoundations of CSR and highlight the interactive and political nature of institutional work aimed at addressing major societal challenges
- …
