849 research outputs found

    A New Giant Branch Clump Structure In the Large Magellanic Cloud

    Get PDF
    We present Washington C, T1 CCD photometry of 21 fields located in the northern part of the Large Magellanic Cloud (LMC), and spread over a region of more than 2.52 degrees approximately 6 degrees from the bar. The surveyed areas were chosen on the basis of their proximity to SL 388 and SL 509, whose fields showed the presence of a secondary giant clump, observationally detected by Bica et al. (1998, AJ, 116, 723). From the collected data we found that most of the observed field CMDs do not show a separate secondary clump, but rather a continuous vertical structure (VS), which is clearly seen for the first time. Its position and size are nearly the same throughout the surveyed regions: it lies below the Red Giant Clump (RGC) and extends from the bottom of the RGC to approximately 0.45 mag fainter, spanning the bluest color range of the RGC. The more numerous the VS stars in a field, the larger the number of LMC giants in the same zone. Our analysis demonstrate that VS stars belong to the LMC and are most likely the consequence of some kind of evolutionary process in the LMC, particularly in those LMC regions with a noticeable large giant population. Our results suggest that in order to trigger the formation of VS stars, there should be other conditions besides the appropriate age, metallicity, and the necessary red giant star density. Indeed, stars satisfying the requisites mentioned above are commonly found throughout the LMC, but the VS phenomenon is only clearly seen in some isolated regions. Finally, the fact that clump stars have an intrinsic luminosity dispersion further constrains the use of the clump magnitude as a reliable distance indicator.Comment: 25 pages, 9 figures, 3 tables; to be published in AJ, Dec. issu

    Event-based surveillance during EXPO Milan 2015. Rationale, tools, procedures, and initial results

    Get PDF
    More than 21 million participants attended EXPO Milan from May to October 2015, making it one of the largest protracted mass gathering events in Europe. Given the expected national and international population movement and health security issues associated with this event, Italy fully implemented, for the first time, an event-based surveillance (EBS) system focusing on naturally occurring infectious diseases and the monitoring of biological agents with potential for intentional release. The system started its pilot phase in March 2015 and was fully operational between April and November 2015. In order to set the specific objectives of the EBS system, and its complementary role to indicator-based surveillance, we defined a list of priority diseases and conditions. This list was designed on the basis of the probability and possible public health impact of infectious disease transmission, existing statutory surveillance systems in place, and any surveillance enhancements during the mass gathering event. This article reports the methodology used to design the EBS system for EXPO Milan and the results of 8 months of surveillance

    Clump stars in the Solar Neighbourhood

    Get PDF
    Hipparcos data has allowed the identification of a large number of clump stars in the Solar Neighbourhood. We discuss our present knowledge about their distributions of masses, ages, colours, magnitudes, and metallicities. We point out that the age distribution of clump stars is ``biased'' towards intermediate-ages. Therefore, the metallicity information they contain is different from that provided by the local G dwarfs. Since accurate abundance determinations are about to become available, these may provide useful constraints to chemical evolution models of the local disc.Comment: 6 pages, proc. of the Sept. 20-24, 1999 Vulcano Workshop "The chemical evolution of the Milky Way: stars vs. clusters", eds. F. Matteucci, F. Giovanell

    Chemical evolution of the Small Magellanic Cloud based on planetary nebulae

    Full text link
    We investigate the chemical evolution of the Small Magellanic Cloud (SMC) based on abundance data of planetary nebulae (PNe). The main goal is to investigate the time evolution of the oxygen abundance in this galaxy by deriving an age-metallicity relation. Such a relation is of fundamental importance as an observational constraint of chemical evolution models of the SMC. We have used high quality PNe data in order to derive the properties of the progenitor stars, so that the stellar ages could be estimated. We collected a large number of measured spectral fluxes for each nebula, and derived accurate physical parameters and nebular abundances. New spectral data for a sample of SMC PNe obtained between 1999 and 2002 are also presented. These data are used together with data available in the literature to improve the accuracy of the fluxes for each spectral line. We obtained accurate chemical abundances for PNe in the Small Magellanic Cloud, which can be useful as tools in the study of the chemical evolution of this galaxy and of Local Group galaxies. We present the resulting oxygen versus age diagram and a similar relation involving the [Fe/H] metallicity based on a correlation with stellar data. We discuss the implications of the derived age-metallicity relation for the SMC formation, in particular by suggesting a star formation burst in the last 2-3 Gyr.Comment: 11 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Element abundances in the metal rich open cluster NGC6253

    Get PDF
    We have carried out a big FLAMES survey of 10 Galactic open clusters aiming at different goals. One of them is the determination of chemical abundances, in order to put constraints on the radial metallicity gradient in the disk and its evolution. One of the sample clusters is the very metal rich NGC 6253. We have obtained UVES high resolution spectra of seven candidate cluster members (from the turn off up to the red clump) with the goal of determining the chemical composition of NGC 6253 and to investigate its origin and role in the interpretation of the radial metallicity gradient in the disk. Equivalent width analysis and spectral synthesis were performed using MOOG and Kurucz model atmospheres. We derived abundances of Fe, alpha- and Fe-peak elements, the light element Na and the s-process element Ba. Excluding two likely non-members and the clump giant, whose metallicity from equivalent widths is overestimated, we find an average [Fe/H]=+0.36+/-0.07 (rms) for the cluster. For most of the other elements we derive solar abundance ratios.Comment: accepted by A&A (02/01/2007), 21 pages, 11 ps figure

    Spectroscopic and photometric studies of low-metallicity star-forming dwarf galaxies. I. SBS 1129+576

    Full text link
    Spectroscopy and V,I CCD photometry of the dwarf irregular galaxy SBS 1129+576 are presented for the first time. The CCD images reveal a chain of compact H II regions within the elongated low-surface-brightness (LSB) component of the galaxy. Star formation takes place mainly in two high-surface-brightness H II regions. The mean (V-I) colour of the LSB component in the surface brightness interval between 23 and 26 mag/sq.arcsec is relatively blue ~0.56+/-0.03 mag, as compared to the (V-I)~0.9-1.0 for the majority of known dwarf irregular and blue compact dwarf (BCD) galaxies. Spectroscopy shows that the galaxy is among the most metal-deficient galaxies with an oxygen abundance 12+log(O/H)= 7.36+/-0.10 in the brightest H II region and 7.48+/-0.12 in the second brightest H II region, or 1/36 and 1/28 of the solar value, respectively. Hbeta and Halpha emission lines and Hdelta and Hgamma absorption lines are detected in a large part of the LSB component. We use two extinction-insensitive methods based on the equivalent widths of (1) emission and (2) absorption Balmer lines to put constraints on the age of the stellar populations in the galaxy. In addition, we use two extinction-dependent methods based on (3) the spectral energy distribution (SED) and (4) the (V-I) colour. The observed properties of the LSB component can be reproduced by a stellar population forming continuously since 10 Gyr ago, provided that the star formation rate has increased during the last 100 Myr by a factor of 6 to 50 and no extinction is present. However, the observational properties of the LSB component can be reproduced equally well by continuous star formation which started not earlier than 100 Myr ago and stopped at 5 Myr, if some extinction is assumed.(Abridged)Comment: 17 pages, 12 figures, Accepted for publication in A&

    Lithium in the Intermediate-Age Open Cluster, NGC 3680

    Full text link
    High-dispersion spectra centered on the Li 6708 A line have been obtained for 70 potential members of the open cluster NGC 3680, with an emphasis on stars in the turnoff region. A measurable Li abundance has been derived for 53 stars, 39 of which have radial velocities and proper motions consistent with cluster membership. After being transferred to common temperature and abundance scales, previous Li estimates have been combined to generate a sample of 49 members, 40 of which bracket the cluster Li-dip. Spectroscopic elemental analysis of 8 giants and 5 turnoff stars produces [Fe/H] = -0.17 +/- 0.07 (sd) and -0.07 +/- 0.02 (sd), respectively. We also report measurements of Ca, Si and Ni which are consistent with scaled-solar ratios within the errors. Adopting [Fe/H] = -0.08 (Sect. 3.6), Y^2 isochrone comparisons lead to an age of 1.75 +/- 0.10 Gyr and an apparent modulus of (m-M) = 10.30 +/- 0.15 for the cluster, placing the center of the Li-dip at 1.35 +/- 0.03 solar masses. Among the giants, 5 of 9 cluster members are now known to have measurable Li with A(Li) near 1.0. A combined sample of dwarfs in the Hyades and Praesepe is used to delineate the Li-dip profile at 0.7 Gyr and [Fe/H] = +0.15, establishing its center at 1.42 +/- 0.02 solar masses and noting the possible existence of secondary dip on its red boundary. When evolved to the typical age of the clusters NGC 752, IC 4651 and NGC 3680, the Hyades/Praesepe Li-dip profile reproduces the observed morphology of the combined Li-dip within the CMD's of the intermediate-age clusters while implying a metallicity dependence for the central mass of the Li-dip given by Mass = (1.38 +/-0.04) + (0.4 +/- 0.2)[Fe/H]. The implications of the similarity of the Li-dichotomy among giants in NGC 752 and IC 4651 and the disagreement with the pattern among NGC 3680 giants are discussed.Comment: Latex ms. is 56 pages, including 10 figures and 4 tables. Accepted for the Astronomical Journa

    WIYN Open Cluster Study. XXXIX. Abundances in NGC 6253 from HYDRA Spectroscopy of the Li 6708 A Region

    Full text link
    High-dispersion spectra of 89 potential members of the old, super-metal-rich open cluster, NGC 6253, have been obtained with the HYDRA multi-object spectrograph. Based upon radial-velocity measurements alone, 47 stars at the turnoff of the cluster color-magnitude diagram (CMD) and 18 giants are identified as potential members. Five turnoff stars exhibit evidence of binarity while proper-motion data eliminates two of the dwarfs as members. The mean cluster radial velocity from probable single-star members is -29.4 +/- 1.3 km/sec (sd). A discussion of the current estimates for the cluster reddening, derived independently of potential issues with the BV cluster photometry, lead to an adopted reddening of E(B-V) = 0.22 +/- 0.04. From equivalent width analyses of 38 probable single-star members near the CMD turnoff, the weighted average abundances are found to be [Fe/H] = +0.43 +/- 0.01, [Ni/H] = +0.53 +/- 0.02 and [Si/H] = +0.43 (+0.03,-0.04), where the errors refer to the standard errors of the weighted mean. Weak evidence is found for a possible decline in metallicity with increasing luminosity among stars at the turnoff. We discuss the possibility that our turnoff stars have been affected by microscopic diffusion. For 15 probable single-star members among the giants, spectrum synthesis leads to abundances of +0.46 (+0.02,-0.03) for [Fe/H]. While less than half the age of NGC 6791, NGC 6253 is at least as metal-rich and, within the uncertainties, exhibits the same general abundance pattern as that typified by super-metal-rich dwarfs of the galactic bulge.Comment: 5 Tables, 9 figures, 45 page

    Optical Light Curve of the Type Ia Supernova 1998bu in M96 and the Supernova Calibration of the Hubble Constant

    Get PDF
    We present the UBVRI light curves of the Type Ia supernova SN 1998bu which appeared in the nearby galaxy M96 (NGC 3368). M96 is a spiral galaxy in the Leo I group which has a Cepheid-based distance. Our photometry allows us to calculate the absolute magnitude and reddening of this supernova. These data, when combined with measurements of the four other well-observed supernovae with Cepheid based distances, allow us to calculate the Hubble constant with respect to the Hubble flow defined by the distant Calan/Tololo Type Ia sample. We find a Hubble constant of 64.0 +/- 2.2(internal) +/- 3.5(external) km/s/Mpc, consistent with most previous estimates based on Type Ia supernovae. We note that the two well-observed Type Ia supernovae in Fornax, if placed at the Cepheid distance to the possible Fornax spiral NGC 1365, are apparently too faint with respect to the Calan/Tololo sample calibrated with the five Type Ia supernovae with Cepheid distances to the host galaxies.Comment: AAS LaTeX, 20 pages, 4 figures, 6 tables, accepted for publication in the Astronomical Journal. Figure 1 (finding chart) not include

    The VMC survey - XIV : First results on the look-back time star formation rate tomography of the Small Magellanic Cloud

    Get PDF
    Date of Acceptance: 20/01/2015We analyse deep images from the VISTA survey of the Magellanic Clouds in the YJKs filters, covering 14 deg2 (10 tiles), split into 120 subregions, and comprising the main body and Wing of the Small Magellanic Cloud (SMC). We apply a colour-magnitude diagram reconstruction method that returns their best-fitting star formation rate SFR(t), age-metallicity relation (AMR), distance and mean reddening, together with 68 per cent confidence intervals. The distance data can be approximated by a plane tilted in the East-West direction with a mean inclination of 39°, although deviations of up to ±3 kpc suggest a distorted and warped disc. After assigning to every observed star a probability of belonging to a given age-metallicity interval, we build high-resolution population maps. These dramatically reveal the flocculent nature of the young star-forming regions and the nearly smooth features traced by older stellar generations. They document the formation of the SMC Wing at ages <0.2 Gyr and the peak of star formation in the SMC Bar at ~40 Myr. We clearly detect periods of enhanced star formation at 1.5 and 5 Gyr. The former is possibly related to a new feature found in the AMR, which suggests ingestion of metal-poor gas at ages slightly larger than 1 Gyr. The latter constitutes a major period of stellar mass formation. We confirm that the SFR(t) was moderately low at even older ages.Peer reviewe
    corecore