41 research outputs found
Vitellogenin Underwent Subfunctionalization to Acquire Caste and Behavioral Specific Expression in the Harvester Ant Pogonomyrmex barbatus
PMCID: PMC3744404This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
Clinical characteristics and predictors of complications and mortality in hospitalized octogenarian patients with COVID-19 : an ambispective study
This the study describes the clinical presentation of COVID-19 and the risk factors for complications and death in octogenarian hospitalized patients across the different waves of the disease. The most frequently reported symptoms in hospitalized octogenarian patients were fever, cough, dyspnea, and asthenia with acute respiratory distress syndrome, renal failure, and delirium being the most frequent complications. Regarding complications, diabetes mellitus, heart failure, dyspnea, and higher baseline levels of creatinine were identified as risk factors, while a higher Barthel index and presence of cough were found to be protective. Age, dyspnea, abnormal bilateral chest x-ray, CRP, and sodium were identified as risk factors for death. These findings could be valuable for managing future pandemics by contributing to tailored interventions and strategies to reduce COVID-19 mortality and complications in this patient group
Development and validation of a model to predict ceiling of care in COVID-19 hospitalized patients
Background: Therapeutic ceiling of care is the maximum level of care deemed appropiate to offer to a patient based on their clinical profile and therefore their potential to derive benefit, within the context of the availability of resources. To our knowledge, there are no models to predict ceiling of care decisions in COVID-19 patients or other acute illnesses. We aimed to develop and validate a clinical prediction model to predict ceiling of care decisions using information readily available at the point of hospital admission. Methods: We studied a cohort of adult COVID-19 patients who were hospitalized in 5 centres of Catalonia between 2020 and 2021. All patients had microbiologically proven SARS-CoV-2 infection at the time of hospitalization. Their therapeutic ceiling of care was assessed at hospital admission. Comorbidities collected at hospital admission, age and sex were considered as potential factors for predicting ceiling of care. A logistic regression model was used to predict the ceiling of care. The final model was validated internally and externally using a cohort obtained from the Leeds Teaching Hospitals NHS Trust. The TRIPOD Checklist for Prediction Model Development and Validation from the EQUATOR Network has been followed to report the model. Results: A total of 5813 patients were included in the development cohort, of whom 31.5% were assigned a ceiling of care at the point of hospital admission. A model including age, COVID-19 wave, chronic kidney disease, dementia, dyslipidaemia, heart failure, metastasis, peripheral vascular disease, chronic obstructive pulmonary disease, and stroke or transient ischaemic attack had excellent discrimination and calibration. Subgroup analysis by sex, age group, and relevant comorbidities showed excellent figures for calibration and discrimination. External validation on the Leeds Teaching Hospitals cohort also showed good performance. Conclusions: Ceiling of care can be predicted with great accuracy from a patient's clinical information available at the point of hospital admission. Cohorts without information on ceiling of care could use our model to estimate the probability of ceiling of care. In future pandemics, during emergency situations or when dealing with frail patients, where time-sensitive decisions about the use of life-prolonging treatments are required, this model, combined with clinical expertise, could be valuable. However, future work is needed to evaluate the use of this prediction tool outside COVID-19
The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus
<p>Abstract</p> <p>Background</p> <p>Most evolutionary developmental biology ("evo-devo") studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery.</p> <p>Results</p> <p>We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug <it>Oncopeltus fasciatus</it>, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies) and Hymenoptera (including honeybees), and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing <it>O. fasciatus </it>accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in <it>de novo </it>transcriptome analyses.</p> <p>Conclusions</p> <p>Our sequencing, assembly and annotation framework provide a simple and effective way to achieve high-throughput gene discovery for organisms lacking a sequenced genome. These data will have applications to the study of the evolution of arthropod genes and genetic pathways, and to the wider evolution, development and genomics communities working with emerging model organisms.</p> <p>[The sequence data from this study have been submitted to GenBank under study accession number SRP002610 (<url>http://www.ncbi.nlm.nih.gov/sra?term=SRP002610</url>). Custom scripts generated are available at <url>http://www.extavourlab.com/protocols/index.html</url>. Seven Additional files are available.]</p
Gustatory Perception and Fat Body Energy Metabolism Are Jointly Affected by Vitellogenin and Juvenile Hormone in Honey Bees
Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or “foraging gene” Amfor). Our study demonstrates that the Vg–JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders
Lecciones de patología quirúrgica
Contén: T. I: Generalidades -- t. II: Afecciones de las extremidades. Pt. 1ª : Fracturas y luxaciones -- t. II, pt. 2ª : Afecciones congénitas y adquirida
Lecciones de patología quirúrgica : I generalidades
Contén: T. I Primera parte -- T. II Segunda parte: Afecciones de los vasos y nervios periféricos -- T. III Tercera parte: Afecciones quirúrgicas de los huesos y de las articulacione
La tromboflebitis autoctona del miembro superior
Precede a tít.: Estudios monográficos de Investigación Médica. Clínica de Patología Quirúrgica de la Facultad de Medicina de Barcelon
<i>eyes absent</i>in the cockroach panoistic ovaries regulates proliferation and differentiation through ecdysone signalling
AbstractEyes absent (Eya), is a protein structurally conserved from hydrozoans to humans, for which two basic roles have been reported: it can act as a transcription cofactor and as a protein tyrosine phosphatase. Eya was discovered in the flyDrosophila melanogasterin relation to its function in eye development, and the same function was later reported in other insects. Eya is also involved in insect oogenesis, although studies in this sense are limited toD. melanogaster, which has meroistic ovaries, and whereeyamutations abolish gonad formation.In the present work we studied the function ofeyain the panoistic ovary of the cockroachBlattella germanica. We show thateyais essential for correct development of panoistic ovaries. InB. germanica, eyaacts at different level and in a distinct way in the germarium and the vitellarium. In the germarium,eyacontributes to maintain the correct number of somatic and germinal cells by regulating the expression of steroidogenic genes in the ovary. In the vitellarium,eyafacilitates follicle cells proliferation and contributes to regulate the cell program, in the context of basal ovarian follicle maturation. Thus,eya-depleted females ofB. germanicaarrest the growth and maturation of basal ovarian follicles and become sterile.</jats:p
