16,357 research outputs found
Mobility of Edge Dislocations in the Basal‐Slip System of Zinc
This paper presents the results of measurements of the velocities of 〈1210〉 (0001) edge dislocations in zinc as a function of applied shear stress. All tests were conducted at room temperature on 99.999% pure zinc monocrystals. Dislocations were revealed by means of the Berg‐Barrett x‐ray technique. Stress pulses of microsecond duration were applied to the test specimens by means of a torsion testing machine. Applied resolved shear stresses ranged from 0 to 17.2×10^6 dyn∕cm^2 and measured dislocation velocities ranged from 40–700 cm∕sec. The results of this study indicate that the velocity of edge dislocations in the basal slip system of zinc is linearly proportional to the applied resolved shear stress. These results are analyzed in terms of the phonon drag theory. Agreement between this theory and the results reported here is quite good
Conservative accounting and linear information valuation models
Prior research using the residual income valuation model and linear information models has generally found that estimates of firm value are negatively biased. We argue that this could result from the way in which accounting conservatism effects are reflected in such models. We build on the conservative accounting model of Feltham and Ohlson (1995) and the Dechow, Hutton and Sloan (1999) (DHS) methodology to propose a valuation model that includes a conservatism-correction term, based on the properties of past realizations of residual income and other information. Other information is measured using analyst-forecast-based predictions of residual income. We use data comparable to the DHS sample to compare the bias and inaccuracy of value estimates from our model and from models similar to those used by DHS and Myers (1999). Valuation biases are substantially less negative for our model, but valuation inaccuracy is not markedly reduced
Disagreement between correlations of quantum mechanics and stochastic electrodynamics in the damped parametric oscillator
Intracavity and external third order correlations in the damped nondegenerate
parametric oscillator are calculated for quantum mechanics and stochastic
electrodynamics (SED), a semiclassical theory. The two theories yield greatly
different results, with the correlations of quantum mechanics being cubic in
the system's nonlinear coupling constant and those of SED being linear in the
same constant. In particular, differences between the two theories are present
in at least a mesoscopic regime. They also exist when realistic damping is
included. Such differences illustrate distinctions between quantum mechanics
and a hidden variable theory for continuous variables.Comment: accepted by PR
Are analysts? loss functions asymmetric?
Recent research by Gu and Wu (2003) and Basu and Markov (2004) suggests that the well-known optimism bias in analysts? earnings forecasts is attributable to analysts minimizing symmetric, linear loss functions when the distribution of forecast errors is skewed. An alternative explanation for forecast bias is that analysts have asymmetric loss functions. We test this alternative explanation. Theory predicts that if loss functions are asymmetric then forecast error bias depends on forecast error variance, but not necessarily on forecast error skewness. Our results confirm that the ex ante forecast error variance is a significant determinant of forecast error and that, after controlling for variance, the sign of the coefficient on forecast error skewness is opposite to that found in prior research. Our results are consistent with financial analysts having asymmetric loss functions. Further analysis reveals that forecast bias varies systematically across style portfolios formed on book-to-price and market capitalization. These firm characteristics capture systematic variation in forecast error variance and skewness. Within style portfolios, forecast error variance continues to play a dominant role in explaining forecast error.
Effect of Soil Buffer Capacity on Soil Reaction (pH) Modification and Subsequent Effects on Growth and Nutrient Uptake of Plantanus occidentalis L. Seedlings
The buffer capacity of a soil is a significant factor in determining the longevity of soil reaction (pH) adjustments by aluminum sulfate, Al2(SO4)3, or calcium carbonate, CaCO₂. After 12 weeks the modified pH values of the highly buffered Emory silt loam had changed substantially toward the original pH value of 7.6. Modified pH values for the Groseclose silt loam soil remained essentially unchanged under the same conditions. These differences in soil response to modified soil pH are related to the differences in the percentage of vermiculite chlorite and chlorite in the clay fractions of the two soils. The longevity of soil pH modification is related to total sycamore seedling dry weight and nutrient uptake. Though these components were significantly affected for plants grown in a Groseclose soil, the lack of significant response differences, except at the extremely low pH adjustment (5.21), in the Emory soil suggests a rapid change in modified soil pH toward the original soil pH value. The condition of the seedlings coupled with total dry weight accumulation and foliar nutrient content elimiates acid toxicity as a factor affecting growth and nutrient uptake. Plants grown in the Groseclose soil at pH 4.31 could be the exception
Are analysts' loss functions asymmetric?
Recent research by Gu and Wu (2003) and Basu and Markov (2004) suggests that the well-known optimism bias in analysts? earnings forecasts is attributable to analysts minimizing symmetric, linear loss functions when the distribution of forecast errors is skewed. An alternative explanation for forecast bias is that analysts have asymmetric loss functions. We test this alternative explanation. Theory predicts that if loss functions are asymmetric then forecast error bias depends on forecast error variance, but not necessarily on forecast error skewness. Our results confirm that the ex ante forecast error variance is a significant determinant of forecast error and that, after controlling for variance, the sign of the coefficient on forecast error skewness is opposite to that found in prior research. Our results are consistent with financial analysts having asymmetric loss functions. Further analysis reveals that forecast bias varies systematically across style portfolios formed on book-to-price and market capitalization. These firm characteristics capture systematic variation in forecast error variance and skewness. Within style portfolios, forecast error variance continues to play a dominant role in explaining forecast error.
Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery
High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval
Effect of Soil Buffer Capacity on Soil Reaction (pH) Modification and Subsequent Effects on Growth and Nutrient Uptake of Plantanus occidentalis L. Seedlings
The buffer capacity of a soil is a significant factor in determining the longevity of soil reaction (pH) adjustments by aluminum sulfate, Al2(SO4)3, or calcium carbonate, CaCO₂. After 12 weeks the modified pH values of the highly buffered Emory silt loam had changed substantially toward the original pH value of 7.6. Modified pH values for the Groseclose silt loam soil remained essentially unchanged under the same conditions. These differences in soil response to modified soil pH are related to the differences in the percentage of vermiculite chlorite and chlorite in the clay fractions of the two soils. The longevity of soil pH modification is related to total sycamore seedling dry weight and nutrient uptake. Though these components were significantly affected for plants grown in a Groseclose soil, the lack of significant response differences, except at the extremely low pH adjustment (5.21), in the Emory soil suggests a rapid change in modified soil pH toward the original soil pH value. The condition of the seedlings coupled with total dry weight accumulation and foliar nutrient content elimiates acid toxicity as a factor affecting growth and nutrient uptake. Plants grown in the Groseclose soil at pH 4.31 could be the exception
- …
