12,522 research outputs found
Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems
The side-mode suppression ratio (SMSR) of self-seeded gain-switched optical pulses is shown to be an extremely important factor for the use of these pulses in optical communications systems. Experiments carried out involving pulse propagation through dispersion-shifted fiber and a bandpass optical filter demonstrate that, for SMSR values of less than 25 dB, the buildup of noise due to the mode partition effect may render these pulses unsuitable for use in optical communications system
Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Pérot laser
We demonstrate that by using strong external-injection seeding of gain-switched Fabry-Perot (FP) lasers, it is possible to generate optical pulses at repetition rates far in excess of the laser bandwidth. Experimental results illustrate the generation of optical pulses at frequencies up to 20 GHz from a FP laser with a 3-dB bandwidth of only 8 GHz. The optical pulses generated have a duration around 12 ps, and a spectral width of 40 GHz
Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter
A self-pulsating laser diode is used to generate a multicarrier microwave optical signal for use in a hybrid radio/fiber system. The self-pulsation frequency of the laser is controlled by external light injection, and can be varied between 14-24 GHz. The hybrid radio/fiber system, employing the self-pulsation laser, is used to distribute two 155-Mb/s data signals on two radio frequency (RF) carriers (at 18.5 and 18.9 GHz). Experimental results show the overall system performance for both RF channels, and demonstrate that the performance is improved by around 17 dB compared with the case when the laser is used without external injection, and thus, does not self-pulsat
Development of highly flexible broadband networks incorporating wavelength division multiplexing and sub-carrier division multiplexing in a hybrid radio/fiber distribution system
A radio over fiber distribution system incorporating both SCM and WDM technologies is presented. The SCM signal contains five 155 Mbit/s data channels, centered around 18.5 GHz with 450 MHz spacing. This signal is directly modulated onto three high-speed lasers with emission frequencies spaced by 50 GHz. Bragg filters are employed at the receiver base station in order both to demultiplex the required optical channel, and to ensure that the detected signal is single side band (in order to overcome dispersion limitations on the link). Our results show negligible degradation in system performance for the demultiplexing of the WDM signal compared with the back-to-back performance curves
Continuous repetition rate tuning with timing window independent self-seeding of a gain-switched Fabry-PÉrot Laser
In this work, we propose a novel self-seeding technique that yields timing window independent operation allowing continuous repetition rate tuning of the self-seeded gain-switched (SSGS) laser. This is achieved by employing a highly linearly chirped fiber Bragg grating (LC FBG) as a wavelength selective element. The reflected gain-switched pulses are dispersed to such an extent, that temporal overlap occurs between them. This overlap creates a pseudo continues wave like signal that is re-injected into the gain-switched laser
Computer programs calculate potential and charge distributions in a plasma
Computer program determines the potential and charge distributions between two electrodes in a plasma. Solutions of the Vlasov equations for plane, cylindrical, and spherical geometries are determined and density distributions are found for each of these configurations over a range of conditions
Continuous hydroponic wheat production using a recirculating system
Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems
Wavelength tunable lasers in future optical communication systems
Monolithic tunable lasers (TL) have been an important component in dense wavelength division multiplexed (DWDM) systems mainly because of their ability to reduce inventory costs associated with different part numbers for fixed wavelength distributed feedback (DFB) lasers. Moreover, the use of wavelength agile laser diodes in DWDM networks has gained a lot of interest in recent years, due to emerging new applications such as optical switching and routing, which require fast switching lasers in the nanosecond regime (Coldren et al., 2000). Employment of such lasers as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The utilization of TLs in an optical switching and routing environment would put stringent requirements on its performance. This would include increased tuning range, high side mode suppression ratio (SMSR), reduced switching time and excellent wavelength stability. The sampled-grating distributed Bragg reflector (SG DBR) TL proves to be an ideal candidate, due to its large tuning range (40 nm), high output power (10 dBm), high side mode suppression ratio (SMSR > 30 dB) and simplicity of integration
Generation of wavelength tunable optical pulses with SMSR exceeding 50 dB by self-seeding a gain-switched source containing two FP lasers
In this letter, we show the generation of shorter pulses (∼20 ps) that exhibit side mode suppression ratios (SMSR's) greater than 50 dB and wider tuning range (48.91 nm). Our technique is based on the self-seeding of a gain-switched source containing two FP lasers
- …
