26 research outputs found
First events from the CNGS neutrino beam detected in the OPERA experiment
The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS)
was designed to perform the first detection of neutrino oscillations in
appearance mode, through the study of nu_mu to nu_tau oscillations. The
apparatus consists of a lead/emulsion-film target complemented by electronic
detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam
(CNGS) 730 km away from the neutrino source. In August 2006 a first run with
CNGS neutrinos was successfully conducted. A first sample of neutrino events
was collected, statistically consistent with the integrated beam intensity.
After a brief description of the beam and of the various sub-detectors, we
report on the achievement of this milestone, presenting the first data and some
analysis results.Comment: Submitted to the New Journal of Physic
Measurement of the atmospheric muon charge ratio with the OPERA detector
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used
to measure the atmospheric muon charge ratio in the TeV energy region. We
analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime
during the 2008 CNGS run. We computed separately the muon charge ratio for
single and for multiple muon events in order to select different energy regions
of the primary cosmic ray spectrum and to test the charge ratio dependence on
the primary composition. The measured charge ratio values were corrected taking
into account the charge-misidentification errors. Data have also been grouped
in five bins of the "vertical surface energy". A fit to a simplified model of
muon production in the atmosphere allowed the determination of the pion and
kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic
counters and target units based on nuclear photographic emulsion films have
been developed. The application to the OPERA experiment, that aims at detecting
oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is
reported in this paper. In order to reduce background due to latent tracks
collected before installation in the detector, on-site large-scale treatments
of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd)
packages, each made of a doublet of emulsion films, have been designed,
assembled and coupled to the OPERA target units ("ECC bricks"). A device has
been built to print X-ray spots for accurate interconnection both within the
CSd and between the CSd and the related ECC brick. Sample emulsion films have
been extensively scanned with state-of-the-art automated optical microscopes.
Efficient track-matching and powerful background rejection have been achieved
in tests with electronically tagged penetrating muons. Further improvement of
in-doublet film alignment was obtained by matching the pattern of low-energy
electron tracks. The commissioning of the overall OPERA alignment procedure is
in progress.Comment: 19 pages, 19 figure
Study of the effects induced by lead on the emulsion films of the OPERA experiment
The OPERA neutrino oscillation experiment is based on the use of the Emulsion
Cloud Chamber (ECC). In the OPERA ECC, nuclear emulsion films acting as very
high precision tracking detectors are interleaved with lead plates providing a
massive target for neutrino interactions. We report on studies related to the
effects occurring from the contact between emulsion and lead. A low
radioactivity lead is required in order to minimize the number of background
tracks in emulsions and to achieve the required performance in the
reconstruction of neutrino events. It was observed that adding other chemical
elements to the lead, in order to improve the mechanical properties, may
significantly increase the level of radioactivity on the emulsions. A detailed
study was made in order to choose a lead alloy with good mechanical properties
and an appropriate packing technique so as to have a low enough effective
radioactivity.Comment: 19 pages, 11 figure
