24,255 research outputs found

    Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems

    Get PDF
    Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion

    A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1

    Get PDF
    Background: The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations. Results: We isolated new T-DNA insertion alleles of subfamily 1 members ERS1 and ETR1 (ers1-3 and etr1-9, respectively), both of which are null mutations based on molecular, biochemical, and genetic analyses. Single mutants show an ethylene response similar to wild type, although both mutants are slightly hypersensitive to ethylene. Double mutants of ers1-3 with etr1-9, as well as with the previously isolated etr1-7, display a constitutive ethylene-response phenotype more pronounced than that observed with any previously characterized combination of ethylene receptor mutations. Dark-grown etr1-9;ers1-3 and etr1-7;ers1-3 seedlings display a constitutive triple-response phenotype. Light-grown etr1-9;ers1-3 and etr1-7;ers1-3 plants are dwarfed, largely sterile, exhibit premature leaf senescence, and develop novel filamentous structures at the base of the flower. A reduced level of ethylene response was still uncovered in the double mutants, indicating that subfamily 2 receptors can independently contribute to signaling, with evidence suggesting that this is due to their interaction with the Raf-like kinase CTR1. Conclusion: Our results are consistent with the ethylene receptors acting as redundant negative regulators of ethylene signaling, but with subfamily 1 receptors playing the predominant role. Loss of a single member of subfamily 1 is largely compensated for by the activity of the other member, but loss of both subfamily members results in a strong constitutive ethylene-response phenotype. The role of subfamily 1 members is greater than previously suspected and analysis of the double mutant null for both ETR1 and ERS1 uncovers novel roles for the receptors not previously characterized

    Numerical and Theoretical Studies of Noise Effects in the Kauffman Model

    Full text link
    In this work we analyze the stochastic dynamics of the Kauffman model evolving under the influence of noise. By considering the average crossing time between two distinct trajectories, we show that different Kauffman models exhibit a similar kind of behavior, even when the structure of their basins of attraction is quite different. This can be considered as a robust property of these models. We present numerical results for the full range of noise level and obtain approximate analytic expressions for the above crossing time as a function of the noise in the limit cases of small and large noise levels.Comment: 24 pages, 9 figures, Submitted to the Journal of Statistical Physic

    Self-organized criticality in the intermediate phase of rigidity percolation

    Full text link
    Experimental results for covalent glasses have highlighted the existence of a new self-organized phase due to the tendency of glass networks to minimize internal stress. Recently, we have shown that an equilibrated self-organized two-dimensional lattice-based model also possesses an intermediate phase in which a percolating rigid cluster exists with a probability between zero and one, depending on the average coordination of the network. In this paper, we study the properties of this intermediate phase in more detail. We find that microscopic perturbations, such as the addition or removal of a single bond, can affect the rigidity of macroscopic regions of the network, in particular, creating or destroying percolation. This, together with a power-law distribution of rigid cluster sizes, suggests that the system is maintained in a critical state on the rigid/floppy boundary throughout the intermediate phase, a behavior similar to self-organized criticality, but, remarkably, in a thermodynamically equilibrated state. The distinction between percolating and non-percolating networks appears physically meaningless, even though the percolating cluster, when it exists, takes up a finite fraction of the network. We point out both similarities and differences between the intermediate phase and the critical point of ordinary percolation models without self-organization. Our results are consistent with an interpretation of recent experiments on the pressure dependence of Raman frequencies in chalcogenide glasses in terms of network homogeneity.Comment: 20 pages, 18 figure

    Self Assembled II-VI Magnetic Quantum Dot as a Voltage-Controlled Spin-Filter

    Full text link
    A key element in the emergence of a full spintronics technology is the development of voltage controlled spin filters to selectively inject carriers of desired spin into semiconductors. We previously demonstrated a prototype of such a device using a II-VI dilute-magnetic semiconductor quantum well which, however, still required an external magnetic field to generate the level splitting. Recent theory suggests that spin selection may be achievable in II-VI paramagnetic semiconductors without external magnetic field through local carrier mediated ferromagnetic interactions. We present the first experimental observation of such an effect using non-magnetic CdSe self-assembled quantum dots in a paramagnetic (Zn,Be,Mn)Se barrier.Comment: 4 pages, 4 figure

    When resources collide: Towards a theory of coincidence in information spaces

    Get PDF
    This paper is an attempt to lay out foundations for a general theory of coincidence in information spaces such as the World Wide Web, expanding on existing work on bursty structures in document streams and information cascades. We elaborate on the hypothesis that every resource that is published in an information space, enters a temporary interaction with another resource once a unique explicit or implicit reference between the two is found. This thought is motivated by Erwin Shroedingers notion of entanglement between quantum systems. We present a generic information cascade model that exploits only the temporal order of information sharing activities, combined with inherent properties of the shared information resources. The approach was applied to data from the world's largest online citizen science platform Zooniverse and we report about findings of this case study
    corecore