47,749 research outputs found

    Analysis of Understanding of Student Concepts in Solving Absolute Value Problems

    Full text link
    Tujuan penelitian ini adalah untuk mendeskripsikan pemahaman konsep dalam menyelesaikan masalah nilai mutlak. Penelitian ini merupakan penelitian deskriptif kualitatif. Dalam penelitian ini peneliti sebagai instrumen utama dan tes uraian menjadi instrumen pendukung. Data penelitian diperoleh dari hasil think alouds dan wawancara. Penelitian ini dilaksanakan di SMA Negeri 11 Ambon dengan subjek penelitian dalam tulisan ini sebanyak 1 orang yang diambil berdasarkan snowballsampling dari 9 siswa. Hasil penelitian menunjukkan bahwa pemahaman konsep siswa diawali dengan menerjemahkan bentuk abstrak ke bentuk yang lebih kongkrit, yakni dengan menentukan hal yang diketahui dan hal yang ditanyakan.Selanjutnya menginterpretasikan penyelesaian masalah secara algoritmik, dan langsung dapat menarik kesimpulan atau mengekstrapolasi. Kata kunci: Nilai Mutlak, Pemahaman Konsep, Penyelesaian Masalah Abstract The purpose of this study is to describe the understanding of concepts in solving absolute value problems. This research is a qualitative descriptive study. In this study, researchers as the main instrument and essay tests become supporting instruments. The research data were obtained from think aloud and interviews. This research was conducted in Ambon 11 Public High School with the research subjects in this paper as many as 1 person taken based on snowball sampling from 9 students. The results showed that understanding students' concepts begin with translating abstract forms into more concrete forms, namely by determining what is known and what is asked. Furthermore, interpreting problem solving algorithmically or completely and can immediately conclude or extrapolate

    Crustal dynamics project session 4 validation and intercomparison experiments 1979-1980 report

    Get PDF
    As part of the Crustal Dynamics Project, an experiment was performed to verify the ability of Satellite Laser Ranging (SLR), Very Long Baseline interferometry (VLBI) and Doppler Satellite Positioning System (Doppler) techniques to estimate the baseline distances between several locations. The Goddard Space Flight Center (GSFC) lasers were in operation at all five sites available to them. The ten baselines involved were analyzed using monthly orbits and various methods of selecting data. The standard deviation of the monthly SLR baseline lengths was at the 7 cm level. The GSFC VLBI (Mark III) data was obtained during three separate experiments. November 1979 at Haystack and Owens Valley, and April and July 1980 at Haystack, Owens Valley, and Fort Davis. Repeatability of the VLBI in determining baseline lengths was calculated to be at the 2 cm level. Jet Propulsion Laboratory (JPL) VLBI (Mark II) data was acquired on the Owens Valley to Goldstone baseline on ten occasions between August 1979 and November 1980. The repeatability of these baseline length determinations was calculated to be at the 5 cm level. National Geodetic Survey (NGS) Doppler data was acquired at all five sites in January 1980. Repeatability of the Doppler determined baseline lengths results were calculated at approximately 30 cm. An intercomparison between baseline distances and associated parameters was made utilizing SLR, VLBI, and Doppler results on all available baselines. The VLBI and SLR length determinations were compared on four baselines with a resultant mean difference of -1 cm and a maximum difference of 12 cm. The SLR and Doppler length determinations were compared on ten baselines with a resultant mean difference of about 30 cm and a maximum difference of about 60 cm. The VLBI and Doppler lengths from seven baselines showed a resultant mean difference of about 30 cm and maximum difference of about 1 meter. The intercomparison of baseline orientation parameters were consistent with past analysis

    Partial breakdown of quantum thermalization in a Hubbard-like model

    Get PDF
    We study the possible breakdown of quantum thermalization in a model of itinerant electrons on a one-dimensional chain without disorder, with both spin and charge degrees of freedom. The eigenstates of this model exhibit peculiar properties in the entanglement entropy, the apparent scaling of which is modified from a "volume law" to an "area law" after performing a partial, site-wise measurement on the system. These properties and others suggest that this model realizes a new, non-thermal phase of matter, known as a quantum disentangled liquid (QDL). The putative existence of this phase has striking implications for the foundations of quantum statistical mechanics.Comment: As accepted to PR

    Extracting falsifiable predictions from sloppy models

    Full text link
    Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to different parameter combinations that range over many decades. Here we discuss how sloppiness affects the sorts of data that best constrain model predictions, makes linear uncertainty approximations dangerous, and introduces computational difficulties in Monte-Carlo uncertainty analysis. We also present a useful test problem and suggest refinements to the standards by which models are communicated.Comment: 4 pages, 2 figures. Submitted to the Annals of the New York Academy of Sciences for publication in "Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference

    The particle interpretation of N = 1 supersymmetric spin foams

    Full text link
    We show that N = 1 supersymmetric BF theory in 3d leads to a supersymmetric spin foam amplitude via a lattice discretisation. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3d gravity coupled to embedded fermionic Feynman diagrams.Comment: Pages: 16+1

    N=2 supersymmetric spin foams in three dimensions

    Full text link
    We construct the spin foam model for N=2 supergravity in three dimensions. Classically, it is a BF theory with gauge algebra osp(2|2). This algebra has representations which are not completely reducible. This complicates the procedure when building a state sum. Fortunately, one can and should excise these representations. We show that the restricted subset of representations form a subcategory closed under tensor product. The resulting state-sum is once again a topological invariant. Furthermore, within this framework one can identify positively and negatively charged fermions propagating on the spin foam. These results on osp(2|2) representations and intertwiners apply more generally to spin network states for N=2 loop quantum supergravity (in 3+1 dimensions) where it allows to define a notion of BPS states.Comment: 12 page

    Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv

    Get PDF
    Copyright: © 2010 Pink et al.Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.Ryan Pink is supported by a grant from Action Medical Research; Daniel Caley is supported by a grant from The Dunhill Medical Trust; David Carter is supported by a grant from the British Society for Haematology

    Extending Sibgatullin's ansatz for the Ernst potential to generate a richer family of axially symmetric solutions of Einstein's equations

    Full text link
    The scope of this talk is to present some preliminary results on an effort, currently in progress, to generate an exact solution of Einstein's equation, suitable for describing spacetime around a rotating compact object. Specifically, the form of the Ernst potential on the symmetry axis and its connection with the multipole moments is discussed thoroughly. The way to calculate the multipole moments of spacetime directly from the value of the Ernst potential on the symmetry axis is presented. Finally, a mixed ansatz is formed for the Ernst potential including parameters additional to the ones dictated by Sibgatullin. Thus, we believe that this talk can also serve as a comment on choosing the appropriate ansatz for the Ernst potential.Comment: Talk given in the 11th Conference on Recent Developments in Gravity, 2-5 June 2004, Lesbos, Greec
    corecore