1,811 research outputs found
Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part2): bond valence sum approach of the hole distribution
The effects of Sr substitution on superconductivity, and more particulary the
changes induced in the hole doping mechanism, were investigated in
Hg2(Ba1-ySry)2YCu2O8-d by a "bond valence sum" analysis with Sr content from y
= 0.0 to y = 1.0. A comparison with CuBa2YCu2O7-d and Cu2Ba2YCu2O8 systems
suggests a possible explanation of the Tc enhancement from 0 K for y = 0.0 to
42 K for y = 1.0. The charge distribution among atoms of the unit cell was
determined from the refined structure, for y = 0.0 to 1.0. It shows a charge
transfer to the superconducting CuO2 plane via two doping channels pi(1) and
pi(2), i.e. through O2(apical)-Cu and Ba/Sr-O1 bonds respectively.Comment: 13 pages, 5 figures, accepted for publication in Journal of Physics:
Condensed Matte
Infrared absorption from Charge Density Waves in magnetic manganites
The infrared absorption of charge density waves coupled to a magnetic
background is first observed in two manganites La{1-x}Ca{x}MnO{3} with x = 0.5
and x = 0.67. In both cases a BCS-like gap 2 Delta (T), which for x=0.5 follows
the hysteretic ferro-antiferromagnetic transition, fully opens at a finite T{0}
< T{Neel}, with 2 Delta(T{0})/kT{c} close to 5. These results may also explain
the unusual coexistence of charge ordering and ferromagnetism in
La{0.5}Ca{0.5}MnO{3}.Comment: File revtex + 3 figs. in epsf. To appear on Phys. Rev. Let
Temperature and field dependence of the phase separation, structure, and magnetic ordering in LaCaMnO, (, 0.50, and 0.53)
Neutron powder diffraction measurements, combined with magnetization and
resistivity data, have been carried out in the doped perovskite
LaCaMnO (, 0.50, and 0.53) to elucidate the structural,
magnetic, and electronic properties of the system around the composition
corresponding to an equal number of Mn3+ and Mn4+. At room temperature all
three samples are paramagnetic and single phase, with crystallographic symmetry
Pnma. The samples then all become ferromagnetic (FM) at K. At
K, however, a second distinct crystallographic phase (denoted A-II)
begins to form. Initially the intrinsic widths of the peaks are quite large,
but they narrow as the temperature decreases and the phase fraction increases,
indicating microscopic coexistence. The fraction of the sample that exhibits
the A-II phase increases with decreasing temperature and also increases with
increasing Ca doping, but the transition never goes to completion to the lowest
temperatures measured (5 K) and the two phases therefore coexist in this
temperature-composition regime. Phase A-II orders antiferromagnetically (AFM)
below a N\'{e}el temperature K, with the CE-type magnetic
structure. Resistivity measurements show that this phase is a conductor, while
the CE phase is insulating. Application of magnetic fields up to 9 T
progressively inhibits the formation of the A-II phase, but this suppression is
path dependent, being much stronger for example if the sample is field-cooled
compared to zero-field cooling and then applying the field. The H-T phase
diagram obtained from the diffraction measurements is in good agreement with
the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure
Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2
We investigate polarization memory effects in single-crystal CuFeO2, which
has a magnetically-induced ferroelectric phase at low temperatures and applied
B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric
phase, we find that the nonpolar collinear antiferromagnetic ground state at B
= 0 T retains a strong memory of the polarization magnitude and direction, such
that upon re-entering the ferroelectric phase a net polarization of comparable
magnitude to the initial polarization is recovered in the absence of external
bias. This memory effect is very robust: in pulsed-magnetic-field measurements,
several pulses into the ferroelectric phase with reverse bias are required to
switch the polarization direction, with significant switching only seen after
the system is driven out of the ferroelectric phase and ground state either
magnetically (by application of B > 13 T) or thermally. The memory effect is
also largely insensitive to the magnetoelastic domain composition, since no
change in the memory effect is observed for a sample driven into a
single-domain state by application of stress in the [1-10] direction. On the
basis of Monte Carlo simulations of the ground state spin configurations, we
propose that the memory effect is due to the existence of helical domain walls
within the nonpolar collinear antiferromagnetic ground state, which would
retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure
Low-Temperature Permittivity of Insulating Perovskite Manganites
Measurements of the low-frequency (f<=100 kHz) permittivity and conductivity
at T<= 150 K are reported for La(1-x)Ca(x)MnO(3) (0<=x<=1) and
Ca(1-y)Sr(y)MnO(3) (0<=y<=0.75) having antiferromagnetic, insulating ground
states covering a broad range of Mn valencies from Mn(3+) to Mn(4+). Static
dielectric constants are determined from the low-T limiting behavior. With
increasing T, relaxation peaks associated with charge-carrier hopping are
observed in the real part of the permittivities and analyzed to determine
dopant binding energies. The data are consistent with a simple model of
hydrogenic impurity levels and imply effective masses m*/m_e~3 for the Mn(4+)
compounds. Particularly interesting is a large dielectric constant (~100)
associated with the C-type antiferromagnetic state near the composition
La(0.2)Ca(0.8)MnO(3).Comment: 6 pages, 8 figures, PRB in pres
Optical study of MgTiO: Evidence for an orbital-Peierls state
Dimension reduction due to the orbital ordering has recently been proposed to
explain the exotic charge, magnetic and structural transitions in some
three-dimensional (3D) transitional metal oxides. We present optical
measurement on a spinel compound MgTiO which undergoes a sharp
metal-insulator transition at 240 K, and show that the spectral change across
the transition can be well understood from the proposed picture of 1D Peierls
transition driven by the ordering of and orbitals. We further
elaborate that the orbital-driven instability picture applies also very well to
the optical data of another spinel CuIrS reported earlier.Comment: 5 pages, 6 figures, to be published in Phys. Rev.
High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths
We report on the design, fabrication and testing of a set of high performance
corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced
prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission.
The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70
GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and
by electro-formation at higher frequencies. The measured performances on side
lobes and return loss meet the stringent Planck requirements over the large
(20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape
and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental
Astronom
Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites
The role of lattice distortion in the charge, orbital and spin ordering in
half doped manganites has been investigated. For fixed magnetic ordering, we
show that the cooperative lattice distortion stabilize the experimentally
observed ordering even when the strong on-site electronic correlation is taken
into account. Furthermore, without invoking the magnetic interactions, the
cooperative lattice distortion alone may lead to the correct charge and orbital
ordering including the charge stacking effect, and the magnetic ordering can be
the consequence of such a charge and orbital ordering. We propose that the
cooperative nature of the lattice distortion is essential to understand the
complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure
Time-dependent local Green's operator and its applications to manganites
An algorithm is presented to calculate the electronic local time-dependent
Green's operator for manganites-related hamiltonians. This algorithm is proved
to scale with the number of states in the Hilbert-space to the 1.55 power,
is able of parallel implementation, and outperforms computationally the Exact
Diagonalization (ED) method for clusters larger than 64 sites (using
parallelization). This method together with the Monte Carlo (MC) technique is
used to derive new results for the manganites phase diagram for the spatial
dimension D=3 and half-filling on a 12x12x12 cluster (3456 orbitals). We obtain
as a function of an insulating parameter, the sequence of ground states given
by: ferromagnetic (FM), antiferromagnetic AF-type A, AF-type CE, dimer and
AF-type G, which are in remarkable agreement with experimental results.Comment: 9 pages, 11 figure
- …
