3,161 research outputs found

    Growth of Antimony Single Crystals and Dislocation Etching

    Get PDF

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur

    Thermal Particle Creation in Cosmological Spacetimes: A Stochastic Approach

    Get PDF
    The stochastic method based on the influence functional formalism introduced in an earlier paper to treat particle creation in near-uniformly accelerated detectors and collapsing masses is applied here to treat thermal and near-thermal radiance in certain types of cosmological expansions. It is indicated how the appearance of thermal radiance in different cosmological spacetimes and in the two apparently distinct classes of black hole and cosmological spacetimes can be understood under a unifying conceptual and methodological framework.Comment: 17 pages, revtex (aps, eqsecnum), submitted to PRD, April 199

    Rotating dust solutions of Einstein's equations with 3-dimensional symmetry groups, Part 3: All Killing fields linearly independent of u^{\alpha} and w^{\alpha}

    Full text link
    This is the third and last part of a series of 3 papers. Using the same method and the same coordinates as in parts 1 and 2, rotating dust solutions of Einstein's equations are investigated that possess 3-dimensional symmetry groups, under the assumption that each of the Killing vectors is linearly independent of velocity uαu^{\alpha} and rotation wαw^{\alpha} at every point of the spacetime region under consideration. The Killing fields are found and the Killing equations are solved for the components of the metric tensor in every case that arises. No progress was made with the Einstein equations in any of the cases, and no previously known solutions were identified. A brief overview of literature on solutions with rotating sources is given.Comment: One missing piece, signaled after eq. (10.7), is added after (10.21). List of corrections: In (3.7) wrong subscript in vorticity; In (3.10) wrong subscript in last term of g_{23}; In (4.23) wrong formulae for g_{12} and g_{22}; In (7.17) missing factor in velocity; In (7.18) one wrong factor in g_{22}; In (10.9) factor in vorticity; In (10.15) - (10.20) y_0 = 0; In (10.20) wrong second term in y. The rewriting typos did not influence result

    Stochastic Theory of Accelerated Detectors in a Quantum Field

    Full text link
    We analyze the statistical mechanical properties of n-detectors in arbitrary states of motion interacting with each other via a quantum field. We use the open system concept and the influence functional method to calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via fields. We discuss the difference between self and mutual impedance and advanced and retarded noise. The mutual effects of detectors on each other can be studied from the Langevin equations derived from the influence functional, as it contains the backreaction of the field on the system self-consistently. We show the existence of general fluctuation- dissipation relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly encapsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions in the accelerated detector problem. The general methodology presented here could also serve as a platform to explore the quantum statistical properties of particles and fields, with practical applications in atomic and optical physics problems.Comment: 32 pages, Late

    Quantum Theory of Non-Relativistic Particles Interacting with Gravity

    Full text link
    We investigate the effects of the gravitational field on the quantum dynamics of non-relativistic particles. We consider N non-relativistic particles, interacting with the linearized gravitational field. Using the Feynman - Vernon influence functional technique, we trace out the graviton field, to obtain a master equation for the system of particles to first order in GG. The effective interaction between the particles, as well as the self-interaction is non-local in time and in general non-markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity induced collapse models. We finally comment on possible applications.Comment: Latex,14 pages, replaced to correct the titl

    SN1A data and the CMB of Modified Curvature at short and long distances

    Get PDF
    The SN1a data, although inconclusive, when combined with other observations makes a strong case that our universe is presently dominated by dark energy. We investigate the possibility that large distance modifications of the curvature of the universe would perhaps offer an alternative explanation of the observation. Our calculations indicate that a universe made up of no dark energy but instead, with a modified curvature at large scales, is not scale-invariant, therefore quite likely it is ruled out by the CMB observations. The sensitivity of the CMB spectrum is checked for the whole range of mode modifications of large or short distance physics. The spectrum is robust against modifications of short-distance physics and the UV cutoff when: the initial state is the adiabatic vacuum, and the inflationary background space is de Sitter.Comment: 13 pages, 2 eps figures, typos corrected, references added; to appear in Phys. Rev.
    corecore