104 research outputs found

    Near-field heat transfer in a scanning thermal microscope

    Full text link
    We present measurements of the near-field heat transfer between the tip of a thermal profiler and planar material surfaces under ultrahigh vacuum conditions. For tip-sample distances below 10-8 m our results differ markedly from the prediction of fluctuating electrodynamics. We argue that these differences are due to the existence of a material-dependent small length scale below which the macroscopic description of the dielectric properties fails, and discuss a corresponding model which yields fair agreement with the available data. These results are of importance for the quantitative interpretation of signals obtained by scanning thermal microscopes capable of detecting local temperature variations on surfaces

    Next-generation sequencing of the chacma baboon and drill monkey cytomegalovirus genomes

    Get PDF
    Cynocephalus ursinus, Chacma Baboon, has natural and common infections of baboon cytomegalovirus (BaCMV). Mandrillus leucophaeus, Drill monkey, are an endangered species that also carries cytomegalovirus (DrCMV). Laboratories study the BaCMV and DrCMV as they share many features with human cytomegalovirus (HCMV) and thus is can be used as a model virus for HCMV research. Nonhuman primate cytomegalovirus is also studied to develop diagnostic assays to help primate colony health. With the introduction of next-generation sequencing we now have the capability of determining specific Chacma Baboon and Drill Monkey cytomegalovirus strain genomes in order to further this research

    Snipe taxonomy based on vocal and non-vocal sound displays: the South American Snipe is two species

    Get PDF
    We analysed breeding sounds of the two subspecies of South American Snipe Gallinago paraguaiae paraguaiae and Gallinago paraguaiae magellanica to determine whether they might be different species: loud vocalizations given on the ground, and the tail‐generated Winnow given in aerial display. Sounds of the two taxa differ qualitatively and quantitatively. Both taxa utter two types of ground call. In G. p. paraguaiae, the calls are bouts of identical sound elements repeated rhythmically and slowly (about five elements per second (Hz)) or rapidly (about 11 Hz). One call of G. p. magellanica is qualitatively similar to those of G. p. paraguaiae but sound elements are repeated more slowly (about 3 Hz). However, its other call type differs strikingly: it is a bout of rhythmically repeated sound couplets, each containing two kinds of sound element. The Winnow of G. p. paraguaiae is a series of sound elements that gradually increase in duration and energy; by contrast, that of G. p. magellanica has two or more kinds of sound element that roughly alternate and are repeated as sets, imparting a stuttering quality. Sounds of the related Puna Snipe (Gallinago andina) resemble but differ quantitatively from those of G. p. paraguaiae. Differences in breeding sounds of G. p. paraguaiae and G. p. magellanica are strong and hold throughout their geographical range. Therefore we suggest that the two taxa be considered different species: G. paraguaiae east of the Andes in much of South America except Patagonia, and G. magellanica in central and southern Chile, Argentina east of the Andes across Patagonia, and Falklands/Malvinas.Fil: Miller, Edward H.. Memorial University Of Newfoundland; CanadáFil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Jaramillo, Alvaro. San Francisco Bay Bird Observatory; Estados UnidosFil: Imberti, Santiago. Asociación Ambiente Sur, Rio Gallegos; ArgentinaFil: Matus, Ricardo. Kilómetro 7 Sur; Chil

    Colorectal Hyperplasia and Dysplasia Due to Human Carcinoembryonic Antigen (CEA) Family Member Expression in Transgenic Mice

    Get PDF
    CEA and CEACAM6 are immunoglobulin family intercellular adhesion molecules that are up-regulated without structural mutations in approximately 70% of human cancers. Results in in vitro systems showing tumorigenic effects for these molecules suggest that this correlation could indicate an instrumental role in tumorigenesis. To test whether this applies in vivo, transgenic mice harboring 187 kb of the human genome containing four CEA family member genes including the CEA and CEACAM6 genes were created and their copy numbers increased by mating until colonocyte expression levels reached levels seen in human colorectal carcinomas. The colonocyte surface level of integrin α5 and the activation of AKT increased progressively with the expression levels of CEA/CEACAM6. Colonic crypts showed a progressive increase in colonocyte proliferation, an increase in crypt fission, and a strong inhibition of both differentiation and anoikis/apoptosis. All transgenic mice showed massively enlarged colons comprising a continuous mosaic of severe hyperplasia, dysplasia and serrated adenomatous morphology. These results suggest that up-regulated non-mutated adhesion molecules could have a significant instrumental role in human cancer

    Imaging and interpretation of MT data: Some case histories

    No full text
    corecore