83 research outputs found
Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides
Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied
by means of fully-relativistic spin-polarized band structure calculations
within the local spin-density approximation. It is found that the size of the
magnetic anisotropy is fairly large (about 10 meV/unit formula), which is
comparable with experiment. This strong anisotropy is discussed in view of a
pseudo-gap formation, of which crucial ingredients are the exchange splitting
of U 5f states and their hybridization with chalcogen p states (f-p
hybridization). An anomalous trend in the anisotropy is found in the series
(US>>USe<UTe) and interpreted in terms of competition between localization of
the U 5f states and the f-p hybridization. It is the spin-orbit interaction on
the chalcogen p states that plays an essential role in enlarging the strength
of the f-p hybridization in UTe, leading to an anomalous systematic trend in
the magnetic anisotropy.Comment: 4 pages, 5 figure
Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state
Although not an intrinsic superconductor, it has been long--known that, when
intercalated with certain dopants, graphite is capable of exhibiting
superconductivity. Of the family of graphite--based materials which are known
to superconduct, perhaps the most well--studied are the alkali metal--graphite
intercalation compounds (GIC) and, of these, the most easily fabricated is the
CK system which exhibits a transition temperature K. By increasing the alkali metal concentration (through high pressure
fabrication techniques), the transition temperature has been shown to increase
to as much as K in CNa. Lately, in an important recent
development, Weller \emph{et al.} have shown that, at ambient conditions, the
intercalated compounds \cyb and \cca exhibit superconductivity with transition
temperatures K and K respectively, in excess
of that presently reported for other graphite--based compounds. We explore the
architecture of the states near the Fermi level and identify characteristics of
the electronic band structure generic to GICs. As expected, we find that charge
transfer from the intercalant atoms to the graphene sheets results in the
occupation of the --bands. Yet, remarkably, in all those -- and only
those -- compounds that superconduct, we find that an interlayer state, which
is well separated from the carbon sheets, also becomes occupied. We show that
the energy of the interlayer band is controlled by a combination of its
occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript
"Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by
Weller et a
Ferromagnetism in Oriented Graphite Samples
We have studied the magnetization of various, well characterized samples of
highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite
to investigate the recently reported ferromagnetic-like signal and its possible
relation to ferromagnetic impurities. The magnetization results obtained for
HOPG samples for applied fields parallel to the graphene layers - to minimize
the diamagnetic background - show no correlation with the magnetic impurity
concentration. Our overall results suggest an intrinsic origin for the
ferromagnetism found in graphite. We discuss possible origins of the
ferromagnetic signal.Comment: 11 figure
Still Working With “Involuntary Clients” In Youth Justice
A lack of active participation from children and young people in the design and delivery of youth justice services has culminated in the effectiveness of the Youth Justice System being reduced. There has been little independent scrutiny and to add to that strategic direction on how children’s voices are or should be accessed in practice. In the light of this, the paper explores the various challenges associated with promoting the active participation of young people who have offended. More specifically, the paper explores the difficulties engaging those who are disengaged as such individuals may perceive the support on offer as unnecessary and intrusive. The paper argues that in order to reconcile a lack of engagement and feelings of disempowerment the priority should be throughout the Youth Justice System to involve young people in decision-making processes. Ideas will be put forward with regard to how youth justice practice could become more participatory and engaging particularly with regard to those who are ‘involuntary clients’ or in other words difficult to engage. There is a dearth of ‘hard’ empirical evidence on the effectiveness of participatory approaches in youth justice. However if work with young people who offend is innovative and bespoke to allow for young people’s voices to be heard practice could become more effective. But there needs to be the recognition that the ideas put forward in this paper are not ‘magic bullets’
Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation
Temporal Relationships of Treatment with Angiotensin Converting Enzyme Inhibitors on the Hypertension and Cardiac Hypertrophy in Spontaneously Hypertensive Rats
Experimental and theoretical evidence of image states at semiconductor surfaces: the case of GaP(110)
The first theoretical and experimental analysis of image states at a semiconductor surface is presented: results of angle resolved inverse photoemission and of ab-initio pseudopotential calculation in the non-local density approximation for GaP(1 1 0) are compared showing the presence of a well defined image state with a dispersion in k-space very different from the one predicted by simple model
- …
