4,038 research outputs found
Linking engagement and performance: The social network analysis perspective
Theories developed by Tinto and Nora identify academic performance, learning
gains, and involvement in learning communities as significant facets of student
engagement that, in turn, support student persistence. Collaborative learning
environments, such as those employed in the Modeling Instruction introductory
physics course, provide structure for student engagement by encouraging
peer-to-peer interactions. Because of the inherently social nature of
collaborative learning, we examine student interactions in the classroom using
network analysis. We use centrality---a family of measures that quantify how
connected or "central" a particular student is within the classroom
network---to study student engagement longitudinally. Bootstrapped linear
regression modeling shows that students' centrality predicts future academic
performance over and above prior GPA for three out of four centrality measures
tested. In particular, we find that closeness centrality explains 28 % more of
the variance than prior GPA alone. These results confirm that student
engagement in the classroom is critical to supporting academic performance.
Furthermore, we find that this relationship for social interactions does not
emerge until the second half of the semester, suggesting that classroom
community develops over time in a meaningful way
2-D and 3-D Radiation Transfer Models of High-Mass Star Formation
2-D and 3-D radiation transfer models of forming stars generally produce
bluer 1-10 micron colors than 1-D models of the same evolutionary state and
envelope mass. Therefore, 1-D models of the shortwave radiation will generally
estimate a lower envelope mass and later evolutionary state than
multidimensional models. 1-D models are probably reasonable for very young
sources, or longwave analysis (wavelengths > 100 microns). In our 3-D models of
high-mass stars in clumpy molecular clouds, we find no correlation between the
depth of the 10 micron silicate feature and the longwave (> 100 micron) SED
(which sets the envelope mass), even when the average optical extinction of the
envelope is >100 magnitudes. This is in agreement with the observations of
Faison et al. (1998) of several UltraCompact HII (UCHII) regions, suggesting
that many of these sources are more evolved than embedded protostars.
We have calculated a large grid of 2-D models and find substantial overlap
between different evolutionary states in the mid-IR color-color diagrams. We
have developed a model fitter to work in conjunction with the grid to analyze
large datasets. This grid and fitter will be expanded and tested in 2005 and
released to the public in 2006.Comment: 10 pages, 8 figures, to appear in the proceedings of IAU Symp 227,
Massive Star Birth: A Crossroads of Astrophysics, (Cesaroni R., Churchwell
E., Felli M., Walmsley C. editors
Interpreting Spectral Energy Distributions from Young Stellar Objects. I. A grid of 200,000 YSO model SEDs
We present a grid of radiation transfer models of axisymmetric young stellar
objects (YSOs), covering a wide range of stellar masses (from 0.1Msun to
50Msun) and evolutionary stages (from the early envelope infall stage to the
late disk-only stage). The grid consists of 20,000 YSO models, with spectral
energy distributions (SEDs) and polarization spectra computed at ten viewing
angles for each model, resulting in a total of 200,000 SEDs. [...]. These
models are publicly available on a dedicated WWW server:
http://www.astro.wisc.edu/protostars/ . In this paper we summarize the main
features of our models, as well as the range of parameters explored. [...]. We
examine the dependence of the spectral indices of the model SEDs on envelope
accretion rate and disk mass. In addition, we show variations of spectral
indices with stellar temperature, disk inner radius, and disk flaring power for
a subset of disk-only models. We also examine how changing the wavelength range
of data used to calculate spectral indices affects their values. We show sample
color-color plots of the entire grid as well as simulated clusters at various
distances with typical {\it Spitzer Space Telescope} sensitivities. We find
that young embedded sources generally occupy a large region of color-color
space due to inclination and stellar temperature effects. Disk sources occupy a
smaller region of color-color space, but overlap substantially with the region
occupied by embedded sources, especially in the near- and mid-IR. We identify
regions in color-color space where our models indicate that only sources at a
given evolutionary stage should lie. [...].Comment: 69 pages, 28 figures, Accepted for publication in ApJS. Preprint with
full resolution figures available at http://www.astro.wisc.edu/protostars
Telaah Sitotoksik Dari Ekstrak Karang Lunak Nephtea SP.
Telaah aktivitas sitotoksik merupakan langkah awal dalam pencarian senyawa baru yang potensial sebagai antitumor, antara lain berasal dari bahan hayati laut. Karang lunak berpotensi dalam penyediaan substansi bioaktif yang memiliki aktivitas sitotoksik. Sampel karang lunak Nephtea sp diekstraksi dengan pelarut methanol, kemudian dipartisi dengan menggunakan pelarut etil asetat, heksan dan kloroform. Ekstrak dari hasil ekstraksi dan partisi diuji aktivitas sitotoksiknya pada sel telur bulu babi Tripneustes sp. Pengamatan untuk ekstrak metanolik menghambat perkembangan embrio pada perlakuan setelah fertilisasi hanya memperlambat perkembangan embrio bulu babi sedangkan untuk fraksi larut etil asetat, heksan dan kloroform dari kedua perlakuan memiliki aktivitas sitotoksik yang tinggi dengan menghambat perkembangan embrio bulu babi Tripneustes sp. Karang lunak Nephtea sp mengandung senyawa yang memiliki aktivitas sitotoksik yang tinggi. Untuk itu perlu dilakukan pemurnian senyawa lebih lanjut
OVI, NV and CIV in the Galactic Halo: II. Velocity-Resolved Observations with Hubble and FUSE
We present a survey of NV and OVI (and where available CIV) in the Galactic
halo, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the
Hubble Space Telescope (HST) along 34 sightlines. These ions are usually
produced in nonequilibrium processes such as shocks, evaporative interfaces, or
rapidly cooling gas, and thus trace the dynamics of the interstellar medium.
Searching for global trends in integrated and velocity-resolved column density
ratios, we find large variations in most measures, with some evidence for a
systematic trend of higher ionization (lower NV/OVI column density ratio) at
larger positive line-of-sight velocities. The slopes of log[N(NV)/N(OVI)] per
unit velocity range from -0.015 to +0.005, with a mean of
-0.0032+/-0.0022(r)+/-0.0014(sys) dex/(km/s). We compare this dataset with
models of velocity-resolved high-ion signatures of several common physical
structures. The dispersion of the ratios, OVI/NV/CIV, supports the growing
belief that no single model can account for hot halo gas, and in fact some
models predict much stronger trends than are observed. It is important to
understand the signatures of different physical structures to interpret
specific lines of sight and future global surveys.Comment: ApJ in press 43 pages, 22 fig
Fragmentation Instability of Molecular Clouds: Numerical Simulations
We simulate fragmentation and gravitational collapse of cold, magnetized
molecular clouds. We explore the nonlinear development of an instability
mediated by ambipolar diffusion, in which the collapse rate is intermediate to
fast gravitational collapse and slow quasistatic collapse. Initially uniform
stable clouds fragment into elongated clumps with masses largely determined by
the cloud temperature, but substantially larger than the thermal Jeans mass.
The clumps are asymmetric, with significant rotation and vorticity, and lose
magnetic flux as they collapse. The clump shapes, intermediate collapse rates,
and infall profiles may help explain observations not easily fit by
contemporary slow or rapid collapse models.Comment: 25pp, 20 small eps figures, in press ApJ, April 1, 200
Three photometric methods tested on ground-based data of Q 2237+0305
The Einstein Cross, Q~2237+0305, has been photometrically observed in four
bands on two successive nights at NOT (La Palma, Spain) in October 1995. Three
independent algorithms have been used to analyse the data: an automatic image
decomposition technique, a CLEAN algorithm and the new MCS deconvolution code.
The photometric and astrometric results obtained with the three methods are
presented. No photometric variations were found in the four quasar images.
Comparison of the photometry from the three techniques shows that both
systematic and random errors affect each method. When the seeing is worse than
1.0", the errors from the automatic image decomposition technique and the Clean
algorithm tend to be large (0.04-0.1 magnitudes) while the deconvolution code
still gives accurate results (1{sigma} error below 0.04) even for frames with
seeing as bad as 1.7". Reddening is observed in the quasar images and is found
to be compatible with either extinction from the lensing galaxy or colour
dependent microlensing. The photometric accuracy depends on the light
distribution used to model the lensing galaxy. In particular, using a numerical
galaxy model, as done with the MCS algorithm, makes the method less seeing
dependent. Another advantage of using a numerical model is that eventual
non-homogeneous structures in the galaxy can be modeled. Finally, we propose an
observational strategy for a future photometric monitoring of the Einstein
Cross.Comment: 9 pages, accepted for publication in A&
Possible explanations for different surface quality in laser cutting with 1 micron and 10 microns beams
In laser cutting of thick steel sheets, quality difference is observed between cut surfaces obtained with 1 micron and 10 micron laser beams. This paper investigates physical mechanisms for this interesting and important problem of the wavelength dependence. First, striation generation process is described, based on a 3D structure of melt flow on a kerf front, which was revealed for the first time by our recent experimental observations. Two fundamental processes are suggested to explain the difference in the cut surface quality: destabilization of the melt flow in the central part of the kerf front and downward displacement of discrete melt accumulations along the side parts of the front. Then each of the processes is analyzed using a simplified analytical model. The results show that in both processes, different angular dependence of the absorptivity of the laser beam can result in the quality difference. Finally we propose use of radial polarization to improve the quality with the 1 micron wavelength
Rhapso : automatic stitching of mass segments from fourier transform ion cyclotron resonance mass spectra
Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) provides the resolution and mass accuracy needed to analyze complex mixtures such as crude oil. When mixtures contain many different components, a competitive effect within the ICR cell takes place that hampers the detection of a potentially large fraction of the components. Recently, a new data collection technique, which consists of acquiring several spectra of small mass ranges and assembling a complete spectrum afterward, enabled the observation of a record number of peaks with greater accuracy compared to broadband methods. There is a need for statistical methods to combine and preprocess segmented acquisition data. A particular challenge of quadrupole isolation is that near the window edges there is a drop in intensity, hampering the stitching of consecutive windows. We developed an algorithm called Rhapso to stitch peak lists corresponding to multiple different m/z regions from crude oil samples. Rhapso corrects potential edge effects to enable the use of smaller windows and reduce the required overlap between windows, corrects mass shifts between windows, and generates a single peak list for the full spectrum. Relative to a stitching performed manually, Rhapso increased the data processing speed and avoided potential human errors, simplifying the subsequent chemical analysis of the sample. Relative to a broadband spectrum, the stitched output showed an over 2-fold increase in assigned peaks and reduced mass error by a factor of 2. Rhapso is expected to enable routine use of this spectral stitching method for ultracomplex samples, giving a more detailed characterization of existing samples and enabling the characterization of samples that were previously too complex to analyze
- …
